
IEEE TRANSACTIONS ON RELIABILITY 1

An Empirical Study of Fault Triggers in
Linux Operating System: An Evolution Perspective
Guanping Xiao, Zheng Zheng, Member, IEEE, Beibei Yin, Kishor S. Trivedi, Life Fellow, IEEE, Xiaoting Du,

and Kaiyuan Cai

Abstract—This paper is an empirical study of 5741 bug reports
for the Linux kernel from an evolution perspective with the aim
of obtaining a deep understanding of bug characteristics in the
Linux operating system. A bug classification is performed based
on fault triggering conditions, followed by analysis of proportions
and evolution of bug types, together with their comparisons
among versions, products and repair locations. In addition, an
analysis of regression bugs and the relationship between bug
types and the time needed to fix them are presented. Moreover,
the analysis procedure of bug type characteristics based on
complex network metrics is proposed, and four network metrics,
i.e., degree, clustering coefficient, betweenness and closeness, are
utilized to further investigate the relationship between bug types
and software metrics. In this paper, 22 interesting findings based
on the empirical results are revealed, and guidance based on
these findings is provided for developers and users.

Index Terms—bug classification, fault trigger, Linux operating
system, Mandelbug, regression bug, evolution, complex network.

NOMENCLATURE

Acronyms
OS Operating system
BOH Bohrbug
MAN Mandelbug
NAM Non-aging-related Mandelbug
ARB Aging-related bug

Notations
k Degree
kin In-degree
kout Out-degree
C Clustering coefficient
CB Betweenness
CC Closeness
lift(ai, bj) Correlation between categories ai and bj
nm Network metric
bug

(·)
nm Network metric of a bug

version
(·)
nm Average network metric of bugs for a version

I. INTRODUCTION

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 61772055, 61402027 and 61572150) and in part by US
NSF (Grant No. CNS-1523994). (Corresponding author: Zheng Zheng)

G. Xiao, Z. Zheng, B. Yin, X. Du and K. Cai are with the School
of Automation Science and Electrical Engineering, Beihang University,
Beijing 100191, China e-mail: (gpxiao@buaa.edu.cn; zhengz@buaa.edu.cn;
yinbeibei@buaa.edu.cn; xiaoting 2015@buaa.edu.cn; kycai@buaa.edu.cn).

K. S. Trivedi is with Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708, USA e-mail: (ktrivedi@duke.edu).

OVER the past 25 years, the Linux operating system
(OS) has been ubiquitously deployed in various fields in

society. Well-supported Linux distributions are available for a
wide variety of hardware platforms ranging from embedded
devices and personal computers to powerful supercomputers
[1]. With the evolution of the Linux OS, its functionality is
continuously enhanced. For example, Linux version 1.0 was
released in 1994 with approximately 17,000 lines of code,
and version 4.14 was released in 2017 with more than 20
million lines of code. As the Linux OS provides operating
environments to the software systems that are executed on a
computer, its reliability has a direct impact on the services that
are provided by the running software systems.

However, failures will inevitably manifest after the de-
ployment of the Linux OS, as it is not cost-effective to
guarantee high reliability for the Linux OS through exhaustive
testing during the development period. Therefore, the activity
of resolving bug reports provided by bug tracking systems
(e.g., Bugzilla [2]) or static analysis tools (e.g., Coverity
[3]) is a major task in the maintenance phase. Having a
deep understanding of fault characteristics in the Linux OS
is essential and useful for improving its reliability and thus
has attracted much attention during the evolution of the Linux
OS [4]–[9].

It can be expected that comprehending the factors that
trigger faults and/or propagate errors could provide valuable
insights into Linux OS development and maintenance phases.
In 1985, Jim Gray [10] considered bug types from the bug
manifestation perspective. For example, software bugs that
always fail on retry, are regarded as “hard” bugs and are
denoted as Bohrbugs, named after the solid and easily de-
tected Bohr atom. In addition, software bugs with transient
manifestation are considered as “soft” bug and are called
Heisenbugs due to their uncertainty characteristics. For clar-
ifying the relationships between different bug types, Grottke
and Trivedi [11], [12] proposed the definitions of software
fault types, in which the Bohrbug (BOH) can be consistently
reproduced under a well-defined set of conditions. In con-
trast to the Bohrbug, the Mandelbug (MAN), a bug whose
activation and/or error propagation conditions are complex,
is a complementary antonym of the Bohrbug. In addition,
the Mandelbug can be further categorized as a non-aging-
related Mandelbug (NAM) and an aging-related bug (ARB).
An aging-related bug is a type of bug that can lead to the
software aging phenomenon, i.e., to an increase in the failure
rate and/or performance degradation [13], [14]. According
to above classification, research presented in [8] extended

IEEE TRANSACTIONS ON RELIABILITY 2

TABLE I
SUMMARY OF FINDINGS RELATED TO BUG TYPE CHARACTERISTICS ANALYSIS IN LINUX OS

Findings on bug types
#1 Among the 5741 bug reports, actual bugs account for 76.26%, and non-bugs account for 23.74%. In addition, about 75.2% of non-bugs are

compile-time issues, feature requests and documentation issues.
#2 Among the 4378 actual bugs, the proportions of BOHs and MANs are 55.82% and 36.34%, respectively.
#3 The major subtypes of NAMs are TIM (37.23%), ENV (36.51%) and LAG (19.12%).
#4 The major subtype of ARBs is MEM (68.78%).
#5 The proportion of BOHs tends to grow slowly both with the evolution of versions and time, whereas the proportion of NAMs tends to

decrease slowly. The proportion of ARBs tends to decrease slightly over time. The proportions of all the three types stabilize around a
constant value after approximately 4000 days.

#6 The proportions of BOHs and MANs, and their evolution trends are different among versions. For all selected versions, the proportions of
bug types tend to stabilize around a constant value after approximately 600 days.

#7 Driver bugs, i.e., bugs related to the products Drivers and ACPI, account for 51.57% of all classified bugs. In addition, the growth rates of
the number of bugs related to the products Drivers and ACPI are faster than those of other products.

#8 A bug related to the products Drivers, ACPI or Platform is more likely to be a BOH; a bug in the products File System, IO/Storage or
Core (i.e., Memory Management, Process Management and Timers) is more prone to be a NAM or ARB; a Networking bug is more likely
to be a NAM.

#9 The evolution trends of bug type proportions are different among products. For example, the proportions of NAMs related to products File
System, IO/Storage and Core (i.e., Memory Management, Process Management and Timers) tend to grow slightly with time, whereas the
proportions of BOHs in all products tend to increase slowly. For ARBs, the proportions are prone to stabilize around a constant value after
approximately 3000 days.

#10 The repair locations of most bugs are related to the drivers directory.
#11 A bug whose repair location is related to the drivers or arch directory is more likely to be a BOH, whereas a bug whose repair location is

related to the fs or core directory (i.e., kernel, mm and include) is more likely to be a NAM or ARB. A bug whose patch location is
related to the net directory is more likely to be a NAM.

Findings on regression bugs
#12 Regression bugs account for approximately half of the classified bugs.
#13 Regression bugs possess more BOHs than non-regression bugs. In addition, a regression bug is more prone to be a BOH, whereas a non-

regression bug is more likely to be a NAM or ARB.
#14 The proportion of regression bugs tends to increase with the evolution of versions and time. Moreover, the proportions of regression and

non-regression bugs tend to stabilize around a constant value 0.5 after approximately 3500 days.
#15 More than half of regression bugs are caused by feature changes, including the activities of code cleanup and simplification, code conver-

sion and refactoring, feature improvement and feature implementation, and so on.
#16 Approximately one third of regression bugs are caused by bug fixes. In addition, it is found that there are regression bug chains, since the

fix for a regression bug can lead to another regression bug.

Findings on time to fix
#17 The average time needed to fix an MAN tends to be longer than that needed to fix a BOH.
#18 The average time required to fix a regression bug tends to be shorter than that to fix a non-regression bug.

Findings on software metrics
#19 With the evolution of clustering coefficient, a Linux with a large clustering coefficient tends to possess a low proportion of BOHs. In

contrast, a Linux with a large clustering coefficient tends to have a high proportion of MANs.
#20 The characteristics of BOHs and MANs are significantly different based on the network metric degree. The sum of degrees (i.e., kout, kin

and k), the average or maximum degree (i.e., kout and k) for an MAN is significantly larger than that for a BOH.
#21 The characteristics of BOHs and MANs are not significantly different based on the network metrics clustering coefficient and betweenness.
#22 The characteristics of BOHs and MANs are significantly different based on the network metric closeness. The average or minimum close-

ness for a BOH is significantly larger than that for an MAN.

a more specific bug type classification for non-aging-related
Mandelbugs and aging-related bugs, respectively. In addition,
it was the first paper to explore the bug characteristics based
on fault triggering conditions in the Linux OS.

In this paper, we perform a study of fault trigger-based bug
characteristics for 5741 bug reports from the Linux kernel.
This is a significant extension compared to the work presented
in [8], whose data set is 346 bug reports. In addition, a further
investigation of bug type characteristics from several aspects is

conducted, including the analysis of proportions and evolution
of bug types, the analysis of regression bugs, the analysis
of relationships between bug types and fixing time, and the
analysis of bug type characteristics based on network metrics.
For each bug report, we carefully examine the description,
comments and the attached files. The contributions of our work
are the answers to the following five research questions.

RQ1: What are the proportions of bug types and how
do they evolve over versions or time?

IEEE TRANSACTIONS ON RELIABILITY 3

Over the past 25 years, Linux has put out more than 1300
releases ranging from versions 1.0 to 4.14. In addition, the
development model of Linux also changed with evolution. For
example, releases before version 2.6 were divided into stable
versions and development versions. Therefore, the proportions
of bug types in Linux and how they change with the evolution
of versions or time, as well as the bug type proportions
among versions, are warranted be explored. Moreover, the
comparisons of bug type proportions among products and
repair locations is also conducted in this research.

RQ2: What is the proportion of regression bugs in Linux
and how does it evolve over versions or time?

The maintenance of Linux would become a difficult task
with its evolution [15]. For example, regression bugs would
occur. A regression bug is a bug that leads to the failure of a
feature that worked normally in previous versions, due to the
activities of bug fixes and/or new functionality implementation
in more recent versions [16]. Therefore, the proportion of
regression bugs, how it evolves over versions or time and how
it impacts the evolution of bug type proportions, as well as
what the causes of regression bugs are, are interesting subjects
to explore.

RQ3: What is the relationship between bug types and
fixing time?

The bug management process consists of several states,
such as new, assigned, resolved, verified and closed [6]. The
fixing time of a bug can be regarded as one measure of bug
complexity. A more complex bug usually requires more time
to fix. For this research question, we investigate the time spent
by developers on fixing bugs for understanding the impact of
bug types on the bug management process.

RQ4: Is there any software metric that can reflect the
evolution of bug type proportions?

A bug in a software system means that there are faulty codes
in the source codes. Thus, the relationship between the evolu-
tion of bug type proportions and software structure information
is examined. In this study, we utilize complex network metrics
to measure the structure information of the Linux OS. Large-
scale software systems are one of the most complex man-made
systems, whose interactions of fundamental compositions, for
example, call graphs or class diagrams, can be abstracted
as networks [17]–[19]. In our previous studies [20]–[22], we
analyzed the topological and functional structures of Linux OS
from a complex network perspective. This provides a research
foundation for the research questions 4 and 5.

RQ5: Is there a discrepancy in bug type characteristics
based on network metrics?

In this research question, we investigate the discrepancy in
bug type characteristics based on complex network metrics.
We label a bug and its bug type on the affected functions,
which are obtained through inspecting the fixing patch. The
affected functions are nodes from the corresponding Linux OS
network. Thus, the network metrics of these labeled nodes can
be acquired and further utilized to represent the characteristics
of the bug and its bug type. The analysis procedure is
elaborated in the Study Methodology section.

The contributions of this paper are summarized as 22
findings, as shown in Table I. The detailed implications of the

findings are illustrated in the relevant sections of the paper.
These results provide valuable insight for the developers and
users of the Linux OS.

This paper extends and improves our previous work [23].
Several new analyses are conducted. For example, 1) for
bug type analysis, we present detailed types in non-bugs and
investigate bug type proportions among repair locations; 2)
for regression bug analysis, the causes of regression bugs are
further examined and discussed; 3) for fixing time analysis,
the relationship between regression bugs and fixing time
is presented; 4) for software metric analysis, we propose
the analysis procedure of bug type characteristics based on
complex network metrics and the comparison results of bug
type characteristics based on network metrics are presented
and discussed.

The remainder of this paper is organized as follows. Section
II describes the research data, including Linux OS and the
Linux bug data. Section III presents the methodology that
was utilized in this study. Sections IV through VI present
the answers for research questions 1 through 3, respectively.
The investigations related to research questions 4 and 5 are
given in Section VII. Section VIII reports the threats to
validity of this study, and Section IX introduces related work.
Finally, the conclusions and future work are given in Section
X. Appendix A lists bug examples and their classifications.
Appendix B describes the network modeling of Linux OS and
the definitions of the selected network metrics. Appendix C
provides detailed information for the comparison results of
bug type characteristics based on network metrics.

II. RESEARCH DATA

To conduct the research questions illustrated in the Intro-
duction, we collected two types of research data, including
the source code of the Linux kernel and the bug reports. The
description of these data and their collection procedure are
described in detail as follows.

A. Linux Operating System

The source code of Linux is obtained from the official web-
site [24]. Linux was originally developed by Linus Torvalds in
1991. The development of Linux has gone through three stages
which are classified according to the change of development
models [15], [22]. The first stage includes releases from
versions 1.0 to 2.5, and the second stage contains the version
2.6 series. The third stage consists of releases beginning
with version 3.0. In the first stage, the version numbering is
denoted as “a.b.c”, in which the first digit “a” represents the
kernel version number, whereas the major and minor version
numbers are denoted by the second digit “b” and the third digit
“c”, respectively. In addition, the odd major version numbers
correspond to development versions, whereas the even major
version numbers represent stable versions. Since there was
a long lag time until new functionality was introduced into
stable versions, the developers decided to change development
models when releasing version 2.6. In this stage, 4 digits are
used to denote the releases starting with 2.6.11 [25]. The
third digit indicates major versions with new functionalities,

IEEE TRANSACTIONS ON RELIABILITY 4

TABLE II
DETAILS OF DATA SET

Status Resolution Versions Products Hardware Reports Time frame

CLOSED CODE FIX 2.4 – 4.9 All All 5741 Nov. 2002 – Nov. 2016

Fig. 1. Procedure for bug data collection and aggregation. Step 1: Report
filtering. Step 2: Report extracting. Step 3: Version integration.

whereas the fourth number indicates minor versions with bug
fixes and security patches. In 2011, for celebrating the 20th
anniversary of Linux, developers stopped the old numbering
method that was utilized in version 2.6 series and reused 3
digits to denote the releases since version 3.0. It is noted that
starting from version 2.6.11, major versions would be released
about every two or three months.

B. Linux Bug Data

With the evolution of Linux, an extensive repository of bugs
has been accumulated and is publicly available. We collected
the Linux bug data from Linux kernel’s official bug reporting
website [2]. As depicted in Fig. 1, the procedure for bug data
collection and aggregation consists of three steps, i.e., report
filtering, report extracting and version integration. These steps
are described in detail below.
• Step 1: Report filtering. In this study, reports in Linux

kernel Bugzilla are initially filtered based on conditions
of “Status: CLOSED” and “Resolution: CODE FIX”.

• Step 2: Report extracting. The list of target reports is
obtained after filtering, and then each report is down-
loaded to the local computer by a web crawler that we
designed. Each report provides the following information:
bug ID, summary, status, product, component, hardware,
importance, kernel version, tree, regression, reported
time, reporter, modified time, assignee, attachments (e.g.,
patch), description and comments.

• Step 3: Version integration. It is necessary to process
the recorded versions of the collected reports for the
following two reasons. First, some users used distribution
versions that were based on the Linux kernel, but they
also reported problems in Linux kernel Bugzilla. For ex-
ample, recorded versions “2.6.6-1.414 (Fedora-devel Ker-
nel)”, “2.6.16-gentoo-r7” and “2.6.32-23-generic (ubuntu
10.04)” are not actually formal Linux released versions.
In addition, some users compiled the latest source codes
from Git, for example, recorded versions “2.6.21-rc5-
git9”, “2.6.22-rc5-git8” and “2.6.23-rc6-git2”, but did not
used the formal release versions. According to the version
numbering method of Linux described in Section II.A, the

recorded versions are integrated into the major versions.
For example, recoded version “2.6.28.7” is regarded as
2.6.28, since version 2.6.28 is a major version, whereas
version 2.6.28.7 is a minor version of 2.6.28.

After collection and aggregation of the bug data, we ob-
tained 5741 bug reports, as shown in Table II. The collected
data cover the mainstream tree for Linux range from versions
2.4 to 4.9 and include all targeted products and hardware
platforms. The data range is for the period from November
2002 through November 2016.

III. STUDY METHODOLOGY

In this section, we first present the definitions of bug
terminologies used in this paper, and describe the procedure
that is conducted to classify bug types. Subsequently, we
introduce the method used for correlation analysis. Lastly, an
analysis procedure of bug characteristics based on network
metrics is proposed.

A. Terminology

Before introducing the terminologies, it is noted that the
terms fault, bug and defect are regarded as having the same
meaning in this study. We adopt the bug type classification
from [8], [11], [12]. A bug is categorized as a Bohrbug
(BOH) or a Mandelbug (MAN) according to the complexity
of fault triggering conditions. The definitions of the Bohrbug
and Mandelbug are given as follows.
• Bohrbug: a bug can be consistently reproduced under a

well-defined set of conditions since its activation and/or
error propagation are simple.

• Mandelbug: a bug is difficult to reproduce since its
activation and/or error propagation are complex. The
complexity of the triggering conditions is attributed to
the possible influence of the direct factor, for example,
a time-lag between the fault activation and the failure
occurrence. In addition, the complexity could also be due
to the indirect factor, for example, the system-internal
environment, the timing of inputs and operations, and the
sequencing of inputs and operations.

Mandelbugs are separated into two subtypes, i.e., non-aging-
related Mandelbugs (NAMs) and aging-related bugs (ARBs),
according to whether a Mandelbug would lead to a software
aging phenomenon. As depicted in Fig. 2, NAM and ARB also
have subtypes. The definitions of NAM subtypes are presented
as follows.
• LAG: there is a time lag between the activation of the

bug and the manifestation of its failure;
• ENV: the interactions of the software application with its

system-internal environment have impact on the activa-
tion and/or error propagation;

IEEE TRANSACTIONS ON RELIABILITY 5

Fig. 2. Based on the complexity of fault triggering conditions, bugs are clas-
sified as Bohrbugs and Mandelbugs. Mandelbugs can be further categorized
as non-aging-related Mandelbugs (NAMs) and aging-related bugs (ARBs).
There are also subtypes in NAMs and ARBs.

• TIM: the timing of inputs and operations is the factor
that impacts the fault activation and/or error propagation;

• SEQ: the sequencing (i.e., the relative order) of inputs
and operations is the factor that impacts the activation
and/or error propagation.

The definitions of ARB subtypes are as follows:
• MEM: the root cause of MEMs is due to the accumula-

tion of errors because of improper memory management,
such as memory leaks, buffers not being flushed;

• STO: the root cause of STOs is due to the accumulation
of errors because of improper storage space management,
such as disk space is consumed by the bug;

• LOG: the root cause of LOGs is a result of the leaks of
other logical resources (system-dependent data structures,
such as inodes or sockets that are not freed after usage);

• NUM: the root cause of NUMs is a result of the accu-
mulation of numerical errors, such as integer overflows,
round-off errors;

• TOT: the root cause of TOTs is that the fault activation or
error propagation rate increases with total system runtime,
but it is not induced by accumulation of internal error
states.

In addition, the definitions of regression and non-regression
bugs are listed below.
• Regression bug: a bug that causes a feature, which

worked normally in previous versions, to stop working
after a certain event;

• Non-regression bug: a bug that leads to the failure of a
new feature in current versions.

B. Bug Taxonomies

The procedure of bug report classification and the determi-
nation of regression bugs are presented in the following. For

Fig. 3. Procedure of bug report classification. Step 1: Data cleaning. Step 2:
Extracting fault triggers. Step 3: Classification.

a given bug report, the classification procedure is summarized
in three steps, as shown in Fig. 3. Each step is described in
detailed as follows.

• Step 1: Data cleaning. The bug report should be first
inspected to confirm whether or not it was a bug. In
this study, requests for new features or for enhancements,
compile-time issues (e.g., make errors or linking errors),
documentation issues (e.g., missing, outdated documen-
tations, or harmless warning outputs), duplicates and
operator errors are regarded as non-bugs and are removed
from the analysis.

• Step 2: Extracting fault triggers. The description,
discussion comments, patches, log files and other attached
files of the bug report are carefully examined to deter-
mine: 1) the activation conditions, for example, the set
of events and/or inputs needed to trigger errors; 2) the
error propagation, for example, the parameters or states
of the program that were changed by the bug and the
manner that a changed parameter or state propagated;
3) the manifestation of the failure, for example, what
phenomenon the users observed when failure occurred.

• Step 3: Classification. Finally, according to the extracted
fault triggers and the bug manifestation phenomena, as
well as the definitions of each subtype of ARB and
NAM, the bug report is successively checked for whether
it belongs to an ARB, NAM or BOH. It is noted that
if a bug was marked as an ARB, but there was not
enough information to determine its failure mechanics,
its bug type would be labeled an ARU. Similarly, NAU is

IEEE TRANSACTIONS ON RELIABILITY 6

labeled for the NAM bugs which lack the information for
extracting the activation and error propagation conditions.
At the end, if a report did not have sufficient information
for classifying it as an ARB, NAM, or BOH, it would be
labeled an unknown type (UNK).

In addition, the determination of a regression bug is pro-
cessed according to two criteria. The first is to check the
regression flag in a bug report. If a bug was reported as a
regression, it would be tagged as Yes in the regression filed
in its reporting page. However, it is not reliable to determine
whether a bug report is a regression bug based only on its
regression flag, since the regression flag was submitted by the
reporter, who could misclassify it. In addition, the regression
flags of some reports are blank, as the reporters did not record
this information. Therefore, the second criterion is to examine
the textual messages of a bug report (e.g., description and
discussion comments) based on the definition of the regression
bug.

All the work with respect to the bug type classification
and regression bug classification is manually implemented
by the authors, and when encountering suspicious classified
cases, cross-checks and discussions occurred. To clarify the
classification, examples of fault trigger-based bug type clas-
sification, and examples of regression bug classification, are
depicted in Appendix A. This could be used as references for
the classification. Furthermore, to enable other researchers to
understand and implement the classification more easily, as
well as for further analysis, our data have been released on
our research website1.

C. Correlation Analysis Among Bug Categories

According to the bug taxonomies, a bug can be categorized
as a BOH or MAN. In addition, the bug could also be
classified as a regression bug. Furthermore, through inspecting
the product affected by a bug, the bug would be considered
as a bug related to a specific product, for example, a driver
bug. Therefore, to investigate the correlation among these
categories, a statistical metric named lift is utilized [26]. The
lift of category ai and category bj is defined as

lift(ai, bj) =
P (aibj)

P (ai) ∗ P (bj)
(1)

where P (aibj) is the probability of a bug belonging to both
category ai and bj . If lift(ai, bj) > 1, categories ai and bj
are positively correlated; if a bug belongs to ai, it is more
possible that the bug also belongs to bj . Symmetrically, if
lift(ai, bj) < 1, if a bug belongs to ai, it is less possible that
the bug also belongs to bj . In addition, if lift(ai, bj) = 1, the
two categories ai and bj are not correlated.

For example, if the total number of bugs is 100, 40 of which
are related to product Drivers, 50 of which are BOHs, and 25
of which are product Drivers bugs and BOHs, the correlation
lift between Drivers bugs and BOHs is calculated as follows.
P (aibj), where category ai represents Drivers bugs and cate-
gory bj denotes BOHs, is 25/100. In addition, P (ai) is 40/100

1http://zhengzheng.buaa.edu.cn/en/pdf/linux.xlsx

and P (bj) is 50/100. Therefore, the value of the correlation
lift(ai, bj) is (25/100)/((40/100) ∗ (50/100)) = 1.25. This
case means that a bug belonging to product Drivers is more
likely to also be a BOH.

D. Bug Analysis Based on Network Metrics

To measure bug characteristics using network metrics, we
need to know the affected functions that are correlated to
the bug. It should be noted that the affected functions are
obtained from the fixing patch. For Linux bug reports, patches
are usually provided as attachments or Git commit IDs. In
the following, we elaborate the analysis procedure of bug
type characteristics based on network metrics, i.e., degree
k, clustering coefficient C, betweenness CB and closeness
CC , and the integration methods of how we utilize these
network metrics. The network modeling of the Linux OS and
the definitions of selected network metrics are presented in
Appendix B.

1) Analysis Procedure: The procedure for measuring char-
acteristics of a bug based on network metrics consists of three
steps. To clarify these steps, an example is given, as shown in
Fig. 4.

• Step 1: Affected function extracting. This step is to
extract the affected functions from the fixing patch of
the bug. The changed statements are first inspected and
then we determine the functions that contain the changed
statements. These affected functions would be recorded
in the table, in which the ID of the bug and its bug type,
as well as the affected version, are also recorded. For
example, as exhibited in Fig. 4, the changed statements
of the fixing patch of bug “ID-1” are in functions func1
and func2, respectively. These functions are recorded in a
table. It should be noted that a bug would be discarded if
its fixing patch cannot identify which functions had been
changed. For example, the fixing patch only modified data
structures.

• Step 2: Acquisition of network metrics. Once all the af-
fected functions are obtained, we examine these functions
in the corresponding Linux OS network, and record the
network metrics of the functions in a table. The network
metrics considered in this work of an affected function
include degree k, clustering coefficient C, betweenness
CB and closeness CC . For example, the in-degree kin of
func1 is 1, whereas its out-degree kout is 2, as shown in
Fig. 4.

• Step 3: Representation of bug characteristics. After
step 2, the network metrics of the affected functions of the
bug have been obtained. To represent the characteristics
of a bug, several integration methods (i.e., sum, average,
maximum and minimum) of the network metrics are used.
For example, we can use the sum of the out-degrees of
the affected functions func1 and func2 as the network
metric of bug “ID-1”, as depicted in Fig. 4. The details
of the integration methods are elaborated in the following
section.

IEEE TRANSACTIONS ON RELIABILITY 7

--- original/file.c

+++ modified/file.c

@@ -132,2 +132,2 @@ int func1(void)

- if (a > b)

+ if (a < b)

@@ -245,3 +245,3 @@ int func2(void)

- i = x + y;

+ i = x - y;

Fig. 4. Analysis procedure of bug characteristics based on network metrics. Step 1: Affected function extracting. Step 2: Acquisition of network metrics.
Step 3: Representation of bug characteristics.

2) Integration Methods of Network Metrics: In this study,
four integration methods of network metrics are utilized,
including the SUM, AVERAGE, MAXIMUM and MINI-
MUM. The definitions of these integration methods are given
as follows. Consider a bug, suppose that the number of affected
functions, which are extracted from its patch, is q. Then, the
network metric representations of the bug are denoted as:
• SUM: the sum of the affected functions’ network metrics.

bugsumnm =

q∑
p=1

nm(p), 1 ≤ p ≤ q (2)

where nm denotes a specific network metric. For exam-
ple, when using clustering coefficient C, the notation of
the network metric of the bug is expressed as bugsumC .
Note that nm in the following expressions has the same
meaning.

• AVERAGE: the average of the affected functions’ net-
work metrics.

bugavenm =

∑q
p=1 nm(p)

q
, 1 ≤ p ≤ q (3)

• MAXIMUM: the maximum of the affected functions’
network metrics.

bugmax
nm = max(nm(p)), 1 ≤ p ≤ q (4)

• MINIMUM: the minimum of the affected functions’
network metrics.

bugmin
nm = min(nm(p)), 1 ≤ p ≤ q (5)

The average network metric of bugs for a version is further
obtained by averaging the network metrics of all the bugs
that belong to the version. Suppose that the number of bugs
belonging to a given version is t. The average network
metric of bugs for the version is calculated by the following
expressions:
• SUM:

versionsumnm =

∑t
s=1 bug

sum
nm (s)

t
, 1 ≤ s ≤ t (6)

• AVERAGE:

versionavenm =

∑t
s=1 bug

ave
nm (s)

t
, 1 ≤ s ≤ t (7)

• MAXIMUM:

versionmax
nm =

∑t
s=1 bug

max
nm (s)

t
, 1 ≤ s ≤ t (8)

IEEE TRANSACTIONS ON RELIABILITY 8

• MINIMUM:

versionmin
nm =

∑t
s=1 bug

min
nm (s)

t
, 1 ≤ s ≤ t (9)

IV. PROPORTIONS AND EVOLUTION OF BUG TYPES

In this section, we present the analytical results for RQ1:
What are the proportions of bug types and how do they
evolve over versions or time? The analysis is conducted from
four aspects, including the overall proportions and evolution
of bug types, comparisons of bug type proportions among
versions, products and repair locations.

A. Overall Proportions and Evolution of Bug Types

Finding #1: Among the 5741 bug reports, actual bugs
account for 76.26%, and non-bugs account for 23.74%. In
addition, about 75.2% of non-bugs are compile-time issues,
feature requests and documentation issues.

Fig. 5 illustrates the classification results of the collected
bugs. After conducting the bug type classification, it can
be observed from Fig. 5 (a) that actual bugs account for
76.26% of all collected bugs, whereas the percentage of
non-bugs is 23.74%. It should be noted that in this study,
as described in Section III.B, reports related to requests of
features or enhancements, compile-time issues, documentation
issues, duplicates and operator errors, are considered as non-
bugs. Bug report triage is an important task which determines
if a report is meaningful [27]. It can be observed from Fig.
5 (b) that about 75.2% of non-bugs are compile-time issues,
feature requests and documentation issues. Although these
reports could be unfriendly experiences to the users, it is
not urgent to organize them for integration into the Linux
development process, or these reports usually can be solved
easily (e.g., compile-time issues and documentation issues.).
A high quality of reported data could not only reduce the
burdens of bug tracking system maintainers but could also
benefit the studies of measurements and predictions based on
the data. However, although the proportion of non-bugs is
less than other open-source projects (e.g., 33.8% [28]), it still
accounts for more than 20% of the collected bugs. This finding
indicates that the quality of the bug data has the potential to
be improved.

Implications: To improve the quality of Linux bug reports, it
is suggested that in the reporting page, there could be a custom
drop-down field regarding the types of reported problems, for
example, “Bug”, “Feature Request”, “Documentation Issue”
and “Compile-time Issue”. Or, the bug writing guidelines
could suggest reporters to prefix the summary of the report
with the words “Bug:”, “Feature Request:”, “Compile-time
Issue:” or “Documentation Issue:”. In addition, since approx-
imately 40% of non-bugs are compile-time issues, developers
should compile their source codes before releasing a version.

Finding #2: Among the 4378 actual bugs, the proportions
of BOHs and MANs are 55.82% and 36.34%, respectively.

The total numbers and percentages of each bug type, i.e.,
BOH, NAM, ARB, and UNK, are exhibited in Fig. 6 (a). The
number of classified bugs is 4035, including BOHs, NAMs

(b)

1363 (23.74%)

4378 (76.26%)

 actual bugs non-bugs(a)

338 (24.8%)

128 (9.39%)

350 (25.68%)

547 (40.13%)

 compile-time issues feature requests
 documentation issues others

Fig. 5. Classification results of the collected bugs. (a) Total numbers and
percentages for actual bugs and non-bugs. (b) Total numbers and percentages
of detailed types of non-bugs.

(c)(b)

343 (7.83%)
205 (4.68%)

1386 (31.66%)
2444 (55.82%)

 BOH
 NAM
 ARB
 UNK

(a)

89 (6.42%)10 (0.72%)

265 (19.12%)

506 (36.51%)

516 (37.23%)

 TIM
 ENV
 LAG
 SEQ
 NAU

22 (10.73%)
3 (1.46%)

11 (5.37%)
12 (5.85%)

16 (7.8%)

141 (68.78%)

 MEM
 STO
 NUM
 LOG
 TOT
 ARU

Fig. 6. Total numbers and percentages of bug types. (a) For each bug type
among the 4378 actual bugs. (b) For each NAM subtype. (c) For each ARB
subtype.

and ARBs, which account for 92.16% of all actual bugs. More
than half of actual bugs in Linux are BOHs, as shown in Fig.
6 (a). This result indicates that in Linux, BOHs account for
a large proportion, although they can be easily reproduced
and debugged under a well-defined set of conditions. This
phenomenon might occur due to the following two reasons.
First, it is usually difficult to test a large operating system. In
addition, the continuous development of Linux could lead to
a high proportion of functional bugs.

Moreover, MANs, including NAMs and ARBs, account
for 36.34% of actual bugs. Obviously, they constitute a non-
negligible portion of Linux bugs. Compared to other software
systems, the proportion of MANs is close to those of MySQL
(i.e., 38% [8]), space mission on-board software (i.e., 36.5%
[29]) and Android OS (i.e., 31.4% [30]). Since the fault
triggering conditions of MANs are more complex, specific
testing methods and fault tolerance techniques should be
developed to handle them.

Implications: To mitigate BOHs, we suggest conducting
sufficient testing before releasing, for example, LTP (Linux
Testing Project) [31]. To mitigate MANs, a non-negligible
fraction exists; we suggest developing specific testing methods,
for example, combinatorial testing [32], and cost-effective
fault tolerance techniques, for example, environment diversity

IEEE TRANSACTIONS ON RELIABILITY 9

[33], to conquer them.
Finding #3: The major subtypes of NAMs are TIM

(37.23%), ENV (36.51%) and LAG (19.12%).
In addition, Fig. 6 (a) shows that the proportions of NAMs

and ARBs account for 31.66% and 4.68% of the 4378 actual
bugs, respectively. We further explore the proportions of
subtypes of NAMs and ARBs, the two subcategories of MANs.
As shown in Fig. 6 (b), TIM (37.23%), ENV (36.51%) and
LAG (19.12%) are the major subtypes of NAMs. This result is
in accordance with a previous study [8]. It is reasonable that
TIM and ENV have high proportions due to the characteristics
of an OS. The Linux OS inherently must handle concurrent ac-
tivities, access shared resources and manage hardware, which
would inevitably cause timing-related problems, for example,
deadlock: “ID-26232: Multiple framebuffer oops and sysfs
attribute deadlock” and race condition: “ID-77251: fanotify:
race condition in case of error in fanotify read”, as well as
environmental interaction problems, such as “ID-9111: kernel
oops when unplugging usb mouse”. For the subtype LAG, its
root causes are usually data corruption problems or incorrect
state changing problems. Once data is corrupted or a state
value is incorrect, the failures would manifest after these errors
propagate through the system. In Linux, the common faults of
subtype LAG are null pointer dereference problems, such as
“ID-10048: ipv4/fib hash.c: fix NULL dereference”.

Implications: Since TIM, ENV and LAG are the major
subtypes of NAMs, debugging, testing or fault tolerance for
mitigating the impact of NAMs in Linux should focus on these
bugs. More specifically, to handle TIMs, it is suggested that
threads conflict or locking mechanisms of Linux should be
paid more attention. To test ENVs, it should be focused on
the hardware interfaces of Linux. While for LAGs, it should
be examined carefully on the values of data variables or state
variables, especially those which are passed in modules or
subsystems.

Finding #4: The major subtype of ARBs is MEM (68.78%).
The numbers and percentages of ARB subtypes are depicted

in Fig. 6 (c). Subtype MEM accounts for more than two
thirds (68.78%) of ARBs. The result is close to other software
systems [8], [29], [30]. Linux is written in C language, in
which memory management is conducted by the developers.
This makes it more prone to software aging. In addition, the
leaks are also associated with storage, numerical problems and
other logical resources.

Implications: We suggest that developers should pay special
attention to the resource releases in Linux. Since MEM is the
major subtype of ARBs, dynamic memory bug detection tools
such as Kmemleak: kernel memory leak detector [34] and
static code analysis tools such as Cppcheck [35], are suitable
for kernel memory leaks debugging to handle the memory-
related ARBs.

In the following, we present the analysis results of bug type
proportion evolution. The evolution analysis is conducted from
two aspects, including evolution over versions and evolution
over time. As described in Section II.B, the recorded versions
were integrated into major versions. We calculate statistics of
the classified bugs corresponding to their integrated versions.
To ensure the validity of the analysis results, continuous

0 5 10 15 20 25
0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
0.00

0.25

0.50

0.75

1.00
(b)

Pr
op

or
tio

ns

SN

 BOH
 NAM
 ARB

(a)

Pr
op

or
tio

ns

Time (days)

 BOH
 NAM
 ARB

Fig. 7. Evolution of bug type proportions among classified bug reports. (a)
Evolution over versions. Note that SN represents the sequential number that
is assigned to each version according to their release dates, e.g., the sequence
number of version 2.6.15 is 1 and that for version 3.0 is 26. The symbol will
be used in the remaining parts of the paper. (b) Evolution over time.

adjacent versions (i.e., 2.6.15 to 3.0) with more than 50 bugs
are chosen to analyze the evolution of bug type proportions
over versions. In addition, the proportions of bug types that
evolve with time are calculated. Since the life cycle of two
major versions could overlap (for example, version 3.7 series
was maintained from December 2012 to March 2013, whereas
version 3.8 series was maintained from February 2013 to May
2013), all versions are considered in the temporal analysis. The
evolution analysis results are depicted in Fig. 7.

Finding #5: The proportion of BOHs tends to grow slowly
both with the evolution of versions and time, whereas the
proportion of NAMs tends to decrease slowly. The proportion
of ARBs tends to decrease slightly over time. The proportions
of all the three types stabilize around a constant value after
approximately 4000 days.

It is apparent in Fig. 7 that the proportion of BOHs tends
to increase slowly with the evolution of versions and the time.
In contrast, the proportion of NAMs tends to decrease. In
addition, the proportion of ARBs tends to decrease slightly
and tends to be more stable with the evolution of versions
or time than BOHs and NAMs. Moreover, as shown in Fig.
7 (b), the proportions of all three types stabilize around a
constant value after approximately 4000 days. It is noted that
the evolution trends in Fig. 7 (a) are tested by means of Mann-
Kendall trend test [36], [37]. The test results indicate that for a
given criterion (α = 0.05), the evolution trends of proportions
for BOHs and NAMs are significant, whereas for ARBs it is
not significant. The evolution trends of BOHs and NAMs can
be explained as follows.

Approximately every two or three months, a major version
of Linux is released. For example, version 4.1 was released on
Jun 22, 2015, whereas version 4.2 was released on Aug 30,
2015. With the evolution of Linux, its complexity continuously
grows, which is reflected by the increasing lines of code
[15] and the increasing number of functions [22]. Meanwhile,
a massive number of features is introduced, which might
lead to more BOHs in newly released versions. Although
code changes would also bring NAMs, the slow decreasing
proportion of NAMs could be due to the fast growth rate of
BOHs proportion.

Implications: Due to the frequent-release characteristic of

IEEE TRANSACTIONS ON RELIABILITY 10

0 400 800 1200 1600
0.00

0.25

0.50

0.75

1.00

0 300 600 900 1200
0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

0 400 800 1200 1600
0.00

0.25

0.50

0.75

1.00
(c) (d)

(b)

Pr
op

or
tio

ns

Time (days)

 BOH
 MAN

(a)

Pr
op

or
tio

ns

Time (days)

 BOH
 MAN

Pr
op

or
tio

ns

Time (days)

 BOH
 MAN

Pr
op

or
tio

ns

Time (days)

 BOH
 MAN

Fig. 8. Evolution of bug type proportions for four selected versions, including
(a) 2.6.0, (b) 2.6.24, (c) 2.6.27 and (d) 2.6.32.

the Linux development paradigm, it is suggested that devel-
opers should pay greater attention to bugs introduced in new
features and should conduct a continuous functional testing
activity.

B. Comparison of Bug Types Among Versions

In this part, four versions with the most bugs are selected
to explore the evolution of bug type proportions over the
lifetime of a version and for comparison among versions. The
analytical results for these versions, including 2.6.0, 2.6.24,
2.6.27 and 2.6.32, are exhibited in Fig. 8.

Finding #6: The proportions of BOHs and MANs, and their
evolution trends are different among versions. For all selected
versions, the proportions of bug types tend to stabilize around
a constant value after approximately 600 days.

It can be observed from Fig. 8 (a) that the proportion of
MANs is higher than that of BOHs in version 2.6.0, the
first major version of the 2.6 series. The higher proportion
of MANs in version 2.6.0 might be attributed to the imple-
mentation of a new CPU scheduler. In versions before 2.6.0,
Linux used a single run-queue that represented a linked list
of threads to manage all runnable tasks. However, to ensure
better scalability on SMP systems, from version 2.6.0, Linux
utilized a per CPU lock rather than the single run-queue lock
for task management. Therefore, the kernel is preemptive from
version 2.6.0, since it can respond to interactive processes
immediately [38]. As developers need time to adapt to the new
scheduler, this feature could lead to more NAMs, especially
timing-related bugs, such as race conditions and deadlocks.

In addition, Fig. 8 (c) shows that the proportion of MANs
tends to increase after about 750 days in version 2.6.27. This
result may be because version 2.6.27 is one of the long-term
support versions. These are special versions that are supported
by the developers for a very long period. During maintenance,
long-term support version could become more stable. Thus, the
proportion of difficult-to-fix bugs (i.e., MANs) would increase,
whereas the proportion of easily isolated and reproduced bugs
(i.e., BOHs) would decrease.

0 1000 2000 3000 4000 5000

0

400

800

1200

1600

Driv
ers

ACPI

File
 Sy

ste
m

IO
/St

ora
ge

Plat
for

m

Netw
ork

ing Core
0

400

800

1200

1600 (b)

241278279324373

625

N
um

be
r o

f b
ug

s

 ARB NAM BOH
1456

(a)
 Drivers
 ACPI
 File System
 IO/Storage
 Platform
 Networking
 Core

N
um

be
r o

f B
ug

s

Time (days)

Fig. 9. Proportions and evolution of classified bugs among products. (a)
Proportion of bugs, (b) evolution of bugs with time. Core includes bugs in 3
products: Memory Management, Process Management and Timers.

Implications: The evolution trends of bug type proportions
can be considered as indicators to determine which testing
strategies should be mainly conducted for each version.

C. Comparison of Bug Types Among Products

Linux consists of several functional products, such as
drivers, file systems, memory management. We analyze the
proportions of bug types and their temporal evolution among
products to understand the impact of different products on bug
types. In the Linux kernel Bugzilla, the first step for reporting
a bug is to select a product (e.g., Drivers, File System,
Memory Management, Process Management), to which the
bug is related. We calculate statistics of bug type proportions
according to the products and the evolution trends for the
number of bugs, as depicted in Fig. 9. It is noted that the
selected products possess the highest number of bugs. The
numbers of BOHs, NAMs and ARBs in these products account
for 89.32%, 87.37% and 88.78% of the total numbers of
BOHs, NAMs and ARBs, respectively.

Finding #7: Driver bugs, i.e., bugs related to the products
Drivers and ACPI, account for 51.57% of all classified bugs.
In addition, the growth rates of the number of bugs related to
the products Drivers and ACPI are faster than those of other
products.

From Fig. 9 (a), we find that the numbers of bugs in the
products Drivers (i.e., 1456) and ACPI (i.e., 625) account for
51.57% of the classified bugs (4035). In addition, the growth
rates of the number of bugs related to these two products
are faster than for other products, which can be observed
in Fig. 9 (b). Linux supports a massive number of devices.
For example, more than 100 types of devices are supported
in version 4.1, and the number of functions of their source
codes account for approximately 50% of the total number of
functions [22]. It is noted that the product ACPI is short for
advanced configuration and power interface, which indicates
that the product is closely related to hardware devices. Since
Linux supports a great diversity of devices, it is difficult to
conduct compatibility testing for all of the device drivers.

Implications: Since more than half of the classified bugs
are related to Drivers, it is suggested that in Linux testing,
developers should pay more attention to device drivers.

IEEE TRANSACTIONS ON RELIABILITY 11

TABLE III
CORRELATION BETWEEN BUG TYPES AND PRODUCTS

BOH NAM ARB

Drivers 1.03 0.98 0.74
ACPI 1.11 0.87 0.53
File System 0.82 1.20 1.90
IO/Storage 0.94 1.04 1.52
Platform 1.12 0.79 0.92
Networking 0.98 1.04 0.99
Core 0.77 1.30 1.79

As shown in Fig. 9 (a), the proportions of bug types are
different among products. To further investigate the correlation
between bug types and products, we utilize metric lift, as
described in Section III.C, to analyze the most likely product
bug types. The analytical results are exhibited in Table III.

Finding #8: A bug related to the products Drivers, ACPI
or Platform is more likely to be a BOH; a bug in the products
File System, IO/Storage or Core (i.e., Memory Management,
Process Management and Timers) is more prone to be a NAM
or ARB; a Networking bug is more likely to be a NAM.

As presented in Table III, the lift values of
Drivers/ACPI/Platform and BOH are greater than 1,
whereas the lift values of File System/IO Storage/Core and
NAM/ARB are greater than 1. In addition, the lift value of
Networking and NAM is greater than 1. The different bug
type manifestations among products might be attributed to the
inherent differences in products. With respect to the products
Drivers, ACPI and Platform Specific/Hardware, although
these products are considered to be bridges between an OS
and devices, failures in these products would be observed
by the users as more direct manifestations. If the driver of a
specific device was not coded correctly, the device would not
be functional. Therefore, bugs occurring in these products
would be more inclined to be BOHs. Comparatively, the
products File System, IO/Storage, Networking and Core (i.e.,
Memory Management, Process Management and Timers) are
considered to be basic and core functions for the OS, which
means that the interactions among these products tend to be
more complex and tightly coupled [21]. Accordingly, bugs
related to these products are more likely to be MANs.

Implications: We suggest that different testing strategies
should be selected to test different products. For example, more
functional testing and compatibility testing should be taken
to test product Drivers, whereas combinatorial testing [32]
might be useful to test the products File System, Networking,
IO/Storage, etc., since bugs related to these products are more
prone to be MANs.

Moreover, the evolution of bug type proportions among the
selected products are explored, as exhibited in Fig. 10.

Finding #9: The evolution trends of bug type proportions
are different among products. For example, the proportions of
NAMs related to products File System, IO/Storage and Core
(i.e., Memory Management, Process Management and Timers)
tend to grow slightly with time, whereas the proportions of
BOHs in all products tend to increase slowly. For ARBs, the

0 1000 2000 3000 4000 50000.00
0.25
0.50
0.75
1.00

0 1000 2000 3000 4000 50000.00
0.25
0.50
0.75
1.00

0 1000 2000 3000 4000 50000.00
0.25
0.50
0.75
1.00

0 1000 2000 3000 40000.00
0.25
0.50
0.75
1.00

0 1000 2000 3000 4000 50000.00
0.25
0.50
0.75
1.00

0 1000 2000 3000 4000 50000.00
0.25
0.50
0.75
1.00

0 1000 2000 3000 4000 50000.00
0.25
0.50
0.75
1.00

(g)

(e)

(f)

(c)

(d)

(b)

Pr
op

or
tio

ns

Time (days)

 BOH NAN ARB(a)

Pr
op

or
tio

ns

Time (days)

 BOH NAN ARB

Pr
op

or
tio

ns

Time (days)

 BOH NAN ARB

Pr
op

or
tio

ns

Time (days)

 BOH NAN ARB

Pr
op

or
tio

ns

Time (days)

 BOH NAN ARB

Pr
op

or
tio

ns

Time (days)

 BOH NAN ARB

Pr
op

or
tio

ns

Time (days)

 BOH NAN ARB

Fig. 10. Evolution of bug type proportions of selected products, including
(a) Drivers, (b) ACPI, (c) File System, (d) IO/Storage, (e) Platform, (f)
Networking and (g) Core (i.e., Memory Management, Process Management
and Timers).

proportions are prone to stabilize around a constant value
after approximately 3000 days.

Implications: Refer to implications for Findings #5 and #8.

D. Comparison of Bug Types Among Repair Locations

The products mentioned in the bug reports are closely
related to the directories of the Linux kernel source codes.
For example, the source codes of the product Drivers are
mainly located in the drivers directory. However, there could
be differences between the recorded products in reports and
the actual root causes of source codes, since the reporters
might misjudge the products with problems. In the following,
we calculate the statistics for the classified bugs that have
patches. Furthermore, we examine the patches of the classified
bugs to inspect and record their repair locations. For example,
the code fix of “ID-18962: screen failes in kde” is located
in “drivers/gpu/drm/i915/i915 gem.c”, which can be obtained
from the patch. Thus, the repair location of the bug is the
drivers directory. If code fixes are related to several directories,
in this circumstance, the directory with major changes is
considered as the repair location.

Finding #10: The repair locations of most bugs are related
to the drivers directory.

Finding #11: A bug whose repair location is related to the
drivers or arch directory is more likely to be a BOH, whereas a
bug whose repair location is related to the fs or core directory
(i.e., kernel, mm and include) is more likely to be a NAM or
ARB. A bug whose patch location is related to the net directory
is more likely to be a NAM.

Statistics results for the classified bugs that have patches
in their reports are depicted in Fig. 11 (a). It is notable that
more than two thirds of the classified bugs have patches. It
should be noted that the bugs whose patches cannot be found
does not indicate that they have not been fixed, but indicates
that their patches are not provided in the reports. Furthermore,
we investigate the proportion of these bugs among five repair

IEEE TRANSACTIONS ON RELIABILITY 12

(b)

1214 (30.09%)

2821 (69.91%)

 patch found patch not found(a)

drivers arch fs core net
0

300

600

900

1200

1500

1800

176
283 208

318

N
um

be
r o

f b
ug

s

 ARB NAM BOH1710

Fig. 11. Statistic results of the classified bugs that have patches in their
reports. (a) Total numbers and percentages. (b) Proportion of bugs based on
their repair locations. The location of core includes three directories, i.e.,
kernel, mm and include.

TABLE IV
CORRELATION BETWEEN BUG TYPES AND REPAIR LOCATIONS

BOH NAM ARB

drivers 1.05 0.92 0.82
arch 1.06 0.89 0.76
fs 0.83 1.26 1.81
core 0.86 1.18 1.94
net 0.87 1.32 0.77

locations, i.e., drivers, arch, fs, core (kernel, mm, include)
and net, as exhibited in Fig. 11 (b). It is noted that the
numbers of BOHs, NAMs and ARBs in these repair locations
account for 95.47%, 95.60% and 96.15%, of all BOHs, NAMs
and ARBs, respectively in all repair locations. Fig. 11 (b)
depicts that the drivers directory accounts for the most repair
locations, since most bugs are related to the product Drivers.
Similarly, a correlation between bug types and repair locations
is conducted, as exhibited in Table IV. The lift values of
drivers/arch and BOH are greater than 1, and the lift values
of fs/core and NAM/ARB, are also greater than 1. In addition,
the lift value of net and NAM is greater than 1. Finding #11
provides evidence of the correlation between bug types and
products from the other perspective.

Implications: Refer to implications for Findings #7 and #8.

V. CHARACTERISTICS OF REGRESSION BUGS

In this section, we present the results of RQ2: What is
the proportion of regression bugs in Linux and how does
it evolve over versions or time? The analytical results first
present the proportion of regression bugs and their bug types,
followed by the evolution analysis. Finally, the causes of
regression bugs are examined.

A. Proportion of Regression Bugs

As described in Section III.A, a bug that could cause a
normal feature which previously worked, to fail or misbehave
completely in recent versions, is classified as a regression bug.
In this section, we first calculate statistics for the numbers of
regression bugs and non-regression bugs, as depicted in Fig. 12
(a). It is notable in Fig. 12 (a) that in Linux, approximately
half of the classified bugs are regression bugs, i.e., existing

66%
55%

31%
38%

3% 7%

2015 (49.94%)

2020 (50.06%)

 regression non-regression

regression non-regression
0.00

0.25

0.50

0.75

1.00
(b)

Pr
op

or
tio

ns

Classified bugs

 ARB NAM BOH(a)

Fig. 12. Regression and non-regression bugs among classified bug reports.
(a) Numbers and percentages for regression and non-regression bugs. (b)
Comparison of bug types for regression and non-regression bugs.

TABLE V
CORRELATION BETWEEN BUG TYPES AND REGRESSION BUGS

BOH NAM ARB

Regression bugs 1.09 0.91 0.58
Non-regression bugs 0.91 1.09 1.42

normal feature broken problems. Compared to other software
systems, it is found that the proportion of regression bugs is
close to that of Google Chromium (e.g., 51.09% [39]).

Finding #12: Regression bugs account for approximately
half of the classified bugs.

Finding #13: Regression bugs possess more BOHs than
non-regression bugs. In addition, a regression bug is more
prone to be a BOH, whereas a non-regression bug is more
likely to be a NAM or ARB.

A comparison of bug type proportions between regression
and non-regression bugs is performed, as shown in Fig. 12
(b). The proportion of BOHs in regression bugs is higher
than that in non-regression bugs. In contrast, more MANs
are observed in non-regression bugs. To further examine these
correlations, we use a metric lift (as described in Section
III.C) to determine the bug types that regression bugs are more
prone to be, as depicted in Table V. It is observed that the lift
value of regression bugs and BOH is greater than 1, and the
lift values of non-regression bugs and NAM/ARB are greater
than 1. This result indicates that regression bugs would lead
to more BOHs than MANs. Regression bugs are annoying to
Linux OS users because when encountering serious regression
bugs, users are unwilling to upgrade their OSs. As a result,
although new versions could have more features or security
enhancements, the systems with old OS versions would be
more prone to suffer security problems.

Implications: We suggest that developers implement more
regression testing before releasing a new version to reduce the
existing normal feature broken problems, since half of the bugs
are related to regressions. While dealing with non-regression
bugs, specific testing methods such as combinatorial testing
[32] would be more effective, since a non-regression bug is
more likely to be an MAN.

IEEE TRANSACTIONS ON RELIABILITY 13

0 5 10 15 20 25
0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
0.00

0.25

0.50

0.75

1.00
(b)

Pr
op

or
tio

ns

SN

 regression bugs
 non-regression bugs

(a)

Pr
op

or
tio

ns

Time (days)

 regression bugs
 non-regression bugs

Fig. 13. Evolution of proportions of regression and non-regression bugs
among classified bug reports. (a) Evolution over versions. (b) Evolution over
time.

B. Evolution of Regression Bugs

In this part, we explore the evolution trends of proportions
of regression and non-regression bugs. The evolution analysis
is conducted from two aspects, i.e., evolution over versions
and evolution over time, as exhibited in Fig. 13 (a) and (b),
respectively.

Finding #14: The proportion of regression bugs tends to
increase with the evolution of versions and time. Moreover,
the proportions of regression and non-regression bugs tend to
stabilize around a constant value 0.5 after approximately 3500
days.

With the evolution of Linux, more and more features are
introduced. For example, the numbers of supported types of
device drivers, architecture platforms, file systems and network
protocols in version 2.4 are less than 40, 15, 40 and 30,
respectively. However, in version 4.1, these numbers increase
to more than 110, 25, 60 and 50, respectively. During the
evolution, a massive number of code changes are implemented
into Linux due to the introduction of a significant number
of features. Consequently, this inevitably leads to regression
bugs. In addition, the activity of bug fixes is another reason,
for example, “ID-10679: pcspkr: fix dependancies breaks
artsd” and “ID-11440: ipv4: sysctl fixes causes cannot open
/proc/sys/net/ipv4/route/flush”. Therefore, the results of Find-
ing #14 are expected and they provide evidence for Findings
#2 and #5.

Implications: Since the proportion of regression bugs in-
creases with evolution and they could produce more BOHs
in Linux, we suggest that developers be more careful when
implementing code changes, for example, feature introducing
or bug fixing, and continuous regression testing should be done
before releasing a new feature or fixing a bug [16].

C. Causes of Regression Bugs

The causes of regression bugs are analyzed by manually
inspecting the descriptions and comments in reports. For
regression bug reports, the reporters would usually describe
that the causes of bugs are due to the changes from some Git
commits. In addition, since several affected versions are very
close to previous versions (e.g., a feature worked normally
in version 2.6.31.1, but fails in version 2.6.31.2), maintainers
would ask the reporters to perform the git-bisect, a binary
search, for finding the first bad commit (i.e., the first change

248 (13%)

613 (32.14%)

1046 (54.85%)

 Feature change
 Bug fix
 Unknown

Fig. 14. Causes of regression bugs.

TABLE VI
DEVELOPMENT ACTIVITIES IN FEATURE CHANGES

Activity Description Example

Code optimization Code cleanup and simplification
Logic improvement
Code conversion and refactoring

ID-32222
ID-12538
ID-10364

Feature improvement Improvement of existing feature ID-11875
Feature implementation Implementation of new feature ID-51881
Feature disable Disable of existing feature ID-14700

that leading to this bug). Through examining the descriptions
of these commits, we can obtain their purposes, such as bug
fixing or feature changing. Since the Linux kernel used Git for
tracking changes from version 2.6.12 [40], we only investigate
the regression bugs with the version number starting with
2.6.12 to ensure the validity of the analytical results. As a
result, there are 1907 selected regression bugs, which account
for 94.4% of all regression bugs.

Finding #15: More than half of regression bugs are caused
by feature changes, including the activities of code cleanup
and simplification, code conversion and refactoring, feature
improvement and feature implementation, and so on.

After performing manual inspection, we find that more than
half of regression bugs are due to the activity of feature
changes, as depicted in Fig. 14. It is noted that several reports
lack information for determining their regression causes, and
thus these bugs are labeled unknown. Moreover, with respect
to the feature change, we identify four kinds of development
activities as exhibited in Table VI. With the evolution of Linux,
several “ancient” codes are necessary to update, i.e., code op-
timization, such as removing or implementing simplifications
to obsolete codes. If these code optimization activities could
not be handled properly, it would inevitably lead to regression
bugs. In addition, the maintenance of existing features and the
introduction of new features could also introduce regression
bugs.

Finding #16: Approximately one third of regression bugs
are caused by bug fixes. In addition, it is found that there are
regression bug chains, since the fix for a regression bug can
lead to another regression bug.

Furthermore, Fig. 14 shows that approximately one third of

IEEE TRANSACTIONS ON RELIABILITY 14

Fig. 15. Two typical examples of regression bug chains initially caused by
(a) feature change or (b) bug fix.

regression bugs are introduced by bug fixes. When inspecting
these regression bugs, an interesting phenomenon is observed:
there are chains of regression bugs, which means that the fix
for a regression bug could be a cause of another regression
bug. Two typical regression bug chains are illustrated in
Fig. 15. The first type of regression chain is initially caused
by a feature change, as shown in Fig. 15 (a). The cause
of regression bug “ID-55411” is due to “commit fcf8058:
cpufreq: Simplify cpufreq add dev()”. To fix this bug, de-
velopers provided “commit aa77a52: cpufreq: acpi-cpufreq:
Don’t set policy->related cpus from .init()”. However, this
commit (i.e., aa77a52) led to bug “ID-58761”. Finally, the
bug was fixed by “commit f4fd379: acpi-cpufreq: Add new
sysfs attribute freqdomain cpus”.

Comparatively, the second type of regression chain is ini-
tially attributed to a bug fix, as depicted in Fig. 15 (b). “commit
fc61901: agp/intel-agp: Clear entire GTT on startup” was
introduced in version 2.6.32.4 for fixing bugs, but it caused
a problem reported in bug “ID-15733”. Later, this bug was
handled by “commit f1befe7: agp/intel: Restrict GTT mapping
to valid range on i915 and i945”. Unfortunately, since this
fix was wrong, it resulted in a regression bug “ID-16294”.
Subsequently, the fix (i.e., “commit e7b96f2: agp/intel: Use
the correct mask to detect i830 aperture size”) also induced
a regression bug “ID-16891”, which was finally fixed by
“commit e5e408f: intel-gtt: fix gtt total entries detection”.

Implications: Since more than half of regression bugs are
caused by feature changes, the activities of code cleanup
and simplification, code conversion and refactoring, feature
improvement and feature implementation, and so on, should
be carefully conducted. In addition, with respect to the regres-
sion bug chains, we suggest developing some techniques to
construct the relationship between regression bugs and their
causes and fixes, such as representing the relationship as
networks, which could be further used to predict regression
bugs. Moreover, as a developer commented in a regression bug
reports: “I’d like to avoid a regression fix for a regression fix

TABLE VII
COMPARISON OF TIME TO FIX BETWEEN BOHS AND MANS

Average fixing time (days) Standard deviation

BOHs 218.63 360.72
MANs 254.22 374.22

for a regression fix.”

VI. RELATIONSHIP BETWEEN BUG TYPE AND FIXING
TIME

In this section, we present the analytical results of RQ3:
What is the relationship between bug types and fixing
time? This research question consists of two parts, i.e., the
discrepancy of fixing time between BOHs and MANs and that
between regression and non-regression bugs.

According to the definitions of BOH and MAN, the fault
triggering conditions of an MAN are more complicated than
those of a BOH. Therefore, it is expected that fixing an MAN
needs a longer time. In the following, the time to fix a bug
is estimated by the difference between the reported time and
the last modified time, since there is no fixing time recorded
in the bug reports.

Finding #17: The average time needed to fix an MAN tends
to be longer than that needed to fix a BOH.

The average fixing time and standard deviation of BOH and
MAN are presented in Table VII. It is notable that the average
time taken to fix an MAN is 254.22 days, whereas fixing a
BOH takes 218.63 days. We use the Wilcoxon-Mann-Whitney
test [41] to further verify the result. The null hypothesis is that
the fixing time for BOH and MAN is sampled according to
the same distribution. For a given criteria (α = 0.05), we
obtained a p value less than 0.001 after performing the test.
This result indicates that the null hypothesis can be rejected
at 95% confidence. Accordingly, we conclude that the time
taken to fix an MAN tends to be longer than that taken to fix
a BOH, which is in accordance with previous studies regarding
HTTPD [8], AXIS [8], and Android [30].

The significantly different fixing time between BOH and
MAN might be attributed to the different time taken to
handle them in the bug management process. The management
process of a bug includes several states, such as Unconfirmed,
New, Assigned, Resolve, Verified and Closed [6]. The major
difference in time taken to fix a BOH and an MAN might
be due to the different transition time between the states
Assigned and Resolved. Due to the different complexity of
fault triggering conditions between BOHs and MANs, devel-
opers usually require much time to obtain more information
to detect the underlying root causes in the code to resolve
an MAN. In addition, the non-deterministic characteristic of
MANs could also result in taking more time to reproduce
an MAN. Consequently, a longer time is necessary to fix an
MAN.

Implications: Due to the longer fixing time, specific testing
methods and fault tolerance approaches would be helpful for
handling MANs.

IEEE TRANSACTIONS ON RELIABILITY 15

TABLE VIII
COMPARISON OF TIME TO FIX BETWEEN REGRESSION AND

NON-REGRESSION BUGS

Average fixing time (days) Standard deviation

Regression bugs 160.14 303.51
Non-regression bugs 305.36 407.55

Finding #18: The average time required to fix a regression
bug tends to be shorter than that to fix a non-regression bug.

Moreover, we investigate the discrepancy of fixing time
between regression and non-regression bugs, as exhibited in
Table VIII. The average time taken to fix a regression bug (i.e.,
160.14 days) is significantly shorter than that taken to fix a
non-regression bugs (i.e., 305.36 days). Similarly, the result is
verified by means of the Wilcoxon-Mann-Whitney test [41].
The null hypothesis is that the fixing time for regression and
non-regression bugs is sampled from the same distribution.
For a given criteria (α = 0.05), after performing the test,
we obtained a p value less than 0.001. This result indicates
that the null hypothesis can be rejected at 95% confidence.
Therefore, fixing a regression bug tends to require less time
than that fixing a non-regression bug. The phenomenon is
reasonable, since the causes of regression bugs can usually be
found quickly. For most regression bugs, especially for recent
regressions, reporters or developers can use git-bisect to search
the first bad Git commit changes that cause the regressions. In
some circumstances, solving a regression bug is done simply
by reverting its initial bad changes.

Implications: Although the average time taken to fix a
regression bug tends to be shorter than that taken to fix a non-
regression bug, fixing regression bugs should be done more
carefully, since inappropriate regression fixes could lead to
more regression bugs according to Finding #16.

VII. BUG TYPE CHARACTERISTICS BASED ON NETWORK
METRICS

In this section, we study the characteristics of bug types
based on software metrics, and present the analytical results
of RQ4: Is there any software metric that can reflect the
evolution of bug type proportions? and RQ5: Is there a
discrepancy in bug type characteristics based on network
metrics?

A. Correlation Between Bug Type Proportions and Network
Metrics

To determine a software metric that can be utilized to reflect
the evolution of bug type proportions, we investigate the rela-
tionship between bug type proportions and a complex network
metric clustering coefficient C. As described in Appendix B,
the clustering coefficient is utilized to evaluate the tendency
of a network to form tightly connected neighborhoods. To
ensure the validity of the analytical results, we select the
versions with more than 50 bugs and calculate their clustering
coefficients of the entire Linux OS network [22]. Fig. 16
depicts the relationships between bug type proportions and
clustering coefficients. In addition, to further analyze their

0.040 0.044 0.048 0.052 0.056

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.040 0.044 0.048 0.052 0.056

0.25

0.30

0.35

0.40

0.45

0.50

0.55 (b) fitting line

Pr
op

or
tio

n

C

Model Belehradek
Equation y = a*(x-b)^c
a 0.22157 ?0.12229
b 0.03957 ?0.00342
c -0.18383 ?0.13031
R-Square(COD) 0.53144

(a)

 fitting linePr
op

or
tio

n

C

Model Belehradek
Equation y = a*(x-b)^c
a 1.05139 ?0.36572
b 0.04115 ?0.00109
c 0.16668 ?0.07332
R-Square(COD) 0.50792

Fig. 16. The relationships between bug type proportions and clustering
coefficients. (a) BOH, (b) MAN.

TABLE IX
PEARSON AND SPEARMAN CORRELATIONS BETWEEN BUG TYPE

PROPORTIONS AND CLUSTERING COEFFICIENT C

BOH - C MAN - C p value

Pearson corr. -0.676 0.676 0.00002
Spearman corr. -0.659 0.659 0.00004

relationships, the Pearson and Spearman correlation analysis
techniques are conducted, as exhibited in Table IX.

Finding #19: With the evolution of clustering coefficient,
a Linux with a large clustering coefficient tends to possess
a low proportion of BOHs. In contrast, a Linux with a large
clustering coefficient tends to have a high proportion of MANs.

As shown in Table IX, both Pearson and Spearman cor-
relations are significant at the 0.01 level. It is noted that
the sample size is 32. According to the results of the evo-
lution of the Linux OS network, the clustering coefficient
decreases with the evolution of versions [22]. Therefore, the
strong negative correlation between the proportion of BOHs
and clustering coefficient indicates that with the evolution
of clustering coefficient, the proportion of BOHs tends to
become higher. In contrast, due to a strong positive correlation
with the clustering coefficient, the proportion of MANs tends
to be lower. This phenomenon might be attributed to the
fact that a large clustering coefficient indicates that there
is a tight local connection of functions, which could lead
to more interactions among internal functions. As a result,
more complex bug manifestation (i.e., MANs) could occur.
Comparatively, a small clustering coefficient refers to a loose
local connection of functions, which could produce a less
complex bug manifestation (i.e., BOHs).

Implications: The clustering coefficient can be utilized as
an indicator to measure the bug type proportions in future
releases of a Linux.

B. Bug Type Characteristic Analyzing Based on Network
Metrics

In this part, we further analyze the characteristics of bug
types based on network metrics. The affected functions of
a bug are extracted from its fixing patch. According to
Section IV.D, there are 2821 classified bugs that have fixing
patches. After performing the analysis procedure described
in Section III.D, to ensure the validity of the results, we

IEEE TRANSACTIONS ON RELIABILITY 16

TABLE X
COMPARISONS OF BUG TYPE CHARACTERISTICS BASED ON NETWORK METRICS

kout versionsum
kout versionave

kout versionmax
kout versionmin

kout

BOH 16.24 9.29 11.28 7.70
MAN 22.04 10.28 13.42 7.81
p value 0.0000 0.0371 0.0023 0.5628

kin versionsum
kin versionave

kin versionmax
kin versionmin

kin

BOH 3.55 1.88 2.59 1.45
MAN 4.96 2.04 3.41 1.24
p value 0.0096 0.5841 0.0736 0.1916

k versionsum
k versionave

k versionmax
k versionmin

k

BOH 19.79 11.17 13.48 9.41
MAN 27.00 12.32 16.08 9.47
p value 0.0000 0.0402 0.0018 0.6058

C versionsum
C versionave

C versionmax
C versionmin

C

BOH 0.0761 0.0401 0.0548 0.0299
MAN 0.0849 0.0360 0.0562 0.0240
p value 0.3717 0.2788 0.9378 0.0685

CB versionsum
CB

versionave
CB

versionmax
CB

versionmin
CB

BOH 0.0013 0.0006 0.0012 0.0003
MAN 0.0057 0.0022 0.0053 0.0006
p value 0.6058 0.3888 0.6279 0.6730

CC versionsum
CC

versionave
CC

versionmax
CC

versionmin
CC

BOH 0.3435 0.1878 0.2376 0.1534
MAN 0.3681 0.1519 0.2236 0.1119
p value 0.6279 0.0071 0.5628 0.0042

identify 1359 valid bugs covering 18 versions with each
version containing at least 50 bugs. In the following, we
explore the discrepancy in bug type characteristics based on
network metrics, including degree k, clustering coefficient
C, betweenness CB and closeness CC . We calculate the
average network metrics of bug types for each version based
on four integration methods defined in Section III.D.2 (i.e.,
versionsumnm , versionavenm , versionmax

nm and versionmin
nm). The

detailed numbers of network metrics of bug types for each
version are provided in Appendix C. The null hypothesis is
that the network metrics for BOH and MAN are sampled from
the same distribution. For a given criteria (α = 0.05), the
results are tested using the Wilcoxon-Mann-Whitney test [41].
Comparisons of bug type characteristics based on network
metrics are presented in Table X.

Finding #20: The characteristics of BOHs and MANs are
significantly different based on the network metric degree. The
sum of degrees (i.e., kout, kin and k), the average or maximum
degree (i.e., kout and k) for an MAN is significantly larger
than that for a BOH.

Finding #21: The characteristics of BOHs and MANs
are not significantly different based on the network metrics
clustering coefficient and betweenness.

Finding #22: The characteristics of BOHs and MANs are
significantly different based on the network metric closeness.
The average or minimum closeness for a BOH is significantly
larger than that for an MAN.

It is apparent in Table X that, the sums of kout, kin and
k for an MAN are significantly larger than those for a BOH.
This phenomenon indicates that the affected functions of an
MAN tend to be implemented more function calls, as well as to
be called by more other functions. Additionally, a comparison
of kout and kin shows that the characteristic difference of
BOHs and MANs seems to be more influenced by the kout.
The average or the maximum kout of the affected function for
an MAN is significantly larger than those for a BOH, which
illustrates that the affected functions on average or the one with
the most function call implementations for an MAN is more
complex than that for a BOH. The discrepancy in bug type
characteristics based on network metric degree is well reflected
in the complexity difference between BOHs and MANs.

In addition, it is found from Table X that the characteristics
of bug types based on network metrics clustering coefficient
and betweenness are not significantly different. Although
using the same metric, i.e., C, the analysis in this part is
different from Section VII.A. The analysis in Section VII.A

IEEE TRANSACTIONS ON RELIABILITY 17

is performed by considering the entire Linux OS network,
whereas the statistical results of C in this part concentrate on
the affected functions of a bug. The bug manifestation process
is not only influenced by the affected functions, but could also
be impacted by the error propagation functions. For CB , the
result indicates that we cannot state that the characteristics of
bug types are significantly different based on this metric.

Furthermore, we obtain from Table X that the character-
istics of bug types based on network metric closeness are
significantly different. The average closeness for a BOH is
significantly larger than the average for an MAN. A larger
closeness of a node means that it is closer to the other nodes.
Therefore, the result of closeness analysis could explain why
the manifestation of BOHs is more direct and consistent than
MANs.

Implications: The characteristics of bug types can be
distinguished and explained by complex network metrics, i.e.,
degree and closeness. These metrics can be further utilized to
predict bug types or as a feature utilized for the automatic
classification of bug types.

VIII. THREATS TO VALIDITY

The validity of empirical studies is naturally subject to
limitations. Since the examined bugs are concentrated on
the Linux kernel, we do not intend to provide any general
implications about bug characteristics in all software systems.
Additionally, we identify the following threats.

Selection of bug reports: In this study, the bug data
exclusively concentrate on closed and fixed reports. The reason
is that the bugs which have not yet been fixed may contain
incomplete and inaccurate information. Bug type proportions
could be influenced by considering these future closed and
fixed bug reports. In addition, the bug characteristic analysis
is based on the bug data from the Bugzilla of the official Linux
kernel. There are several bug sources of Linux distributions,
for example, Arch Linux, Gentoo Linux and Ubuntu Linux.
Similar analyses conducted on these bug sources could have
different bug characteristics compared to the analysis results
that are based on official Linux bug data.

Manual inspection: In this study, 1) the classification of
fault trigger-based bug types, 2) the determination of repair
locations, 3) the classification of regression bugs, 4) the deter-
mination of the causes for regression bugs and 5) the extraction
of affected functions from the corresponding fixing patches,
are manually conducted by examining several details of a
bug report, including report descriptions, forum comments,
attached files (e.g., patches applied for correcting the bug)
and external links that were attached for providing further
information (e.g., Git commit IDs). The results were carefully
cross-checked by two or three of the authors to reduce possible
misclassification and inspection mistakes. However, as in
empirical study where manual inspection is needed, possible
classification mistakes and manual inspection mistakes could
not be avoided in this study.

Bug type definitions: The bug types are defined based on
the bug manifestation properties in terms of fault triggering
conditions. The fault triggering conditions could be different

for different types of software systems, for example, the
environment in subtype ENV of NAM. With respect to the
Linux OS, we consider external hardware devices, mountable
filesystems, running applications and so on, as the environ-
ment. However, with respect to non-OS software systems, the
OS would be the environment.

Evolution analysis: Several factors may influence the evo-
lution of bugs. For version evolution analysis, a new release
can propel users to migrate to the new version. Thus, bugs
of previous versions would be less reported. In addition, for
temporal evolution analysis, bug reporting might decrease due
to fixes of the version taking more time.

Fixing time: The time to fix a bug is computed as the
difference between the reported time and the closed time. In
this study, we consider that the process of verification of the
provided fixing patches is also a part of the fixing time. In
some circumstances, the fixing time of a bug does not reflect
the actual time taken to fix the bug if reporters misused the
bug tracking tool. For example, a bug may already have been
fixed, but the reporter forgot to confirm and close the report.
Thus, the results assume an average low impact of potential
misuses of the tracking tool.

Network metric analysis of bug types: The analysis of
bug type characteristics based on complex network metrics
relies heavily on the fixing patches, i.e., the affected functions
were extracted from the fixing patches. The correctness of the
fixing patches could have impact on the analysis results. In
addition, the discrepancy in bug type characteristics based on
network metrics could be different in other software systems.
In this sense, the analysis procedure and findings should be
considered as a framework to utilize complex network metrics
for analyzing the manifestation characteristics of bugs, to be
confirmed or rejected by further studies on other software
systems or on other bug type classifications, rather than as
general findings.

IX. RELATED WORK

In this section, we first highlight the most related work about
the bug characteristic analysis from the bug manifestation
perspective. Then, we present several other works regarding
regression bug analysis. Finally, we introduce several studies
that analyze the Linux OS from the complex network perspec-
tive.

Several existing papers on defining the general character-
istics of bugs, for example the IEEE Std. 1044 scheme [42],
the Hewlett-Packard (HP) scheme [43], and the Orthogonal
Defect Classification (ODC) [44]. ODC categorize bugs using
several attributes, of which the most important is the bug
type that captures the semantic of the fix conducted by the
programmers and the bug trigger. The classification utilized
in this study is based on the bug manifestation perspective.
In 1985, Jim Gray [10] proposed a systematic abstract about
the manifestation of a bug. With respect to easily reproducible
bugs, he used solid or hard faults to describe them and denoted
them as Bohrbugs. For the transient reproducible bugs, he
described them as soft or elusive bugs, and denoted them
as Heisenbugs. After that, Mandelbug is used to represent

IEEE TRANSACTIONS ON RELIABILITY 18

a type of bug whose underlying causes are so complex and
whose manifestation is chaotic and non-deterministic [45]. For
clarifying the relationship between different definitions of bug
types, Grottke and Trivedi [11], [12] proposed the detailed
definitions of Bohrbugs and Mandelbugs. It was illustrated that
Mandelbugs are the complementary antonyms of Bohrbugs,
whereas Heisenbugs are a subset of Mandelbugs. Moreover,
according to whether a Mandelbug could cause a software
aging phenomenon, Mandelbugs can be further classified
as aging-related bugs and non-aging-related Mandelbugs. In
2013, researchers in [8] provided a more detailed subtype
classification for ARBs and NAMs according to the different
kinds of complexity in fault triggering conditions.

By adopting the above classification, several studies have
concentrated on bug classification and related bug character-
istic analysis in different software systems [8], [29], [30].
Grottke et al. [29] explored the faults found in the on-board
software for 18 JPL/NASA space missions. In this paper,
61.4% of faults were identified as Bohrbugs and 36.5% of
faults were classified as Mandelbugs among the 520 faults
detected in all 18 missions. Researchers in [8] investigated
bugs in four open-source software systems, including Linux,
MySQL, HTTPD and AXIS. They found that the proportion
of Mandelbugs tends to stabilize around a constant value
during the lifecycles of the four projects. Moreover, Qin et
al [30] performed a fault trigger-based bug classification on
the Android operating system by examining 513 bug reports.
In this work, it was found that 31.4% of bugs are Mandelbugs.
Other studies related to bug manifestation perspective are
summarized as follows. Chandra et al. [46] investigated the
faults that occurred in the Apache web server, GNOME
desktop environment and MySQL database. They found that
5–14% of faults were triggered by transient conditions, such
as timing and synchronization. These faults naturally fixed
themselves during recovery. Researchers in [47] studied the
characteristics of the bug manifestation process by defining a
set of failure-exposing conditions, such as workload-dependent
triggers and environment-dependent triggers. In addition, sev-
eral studies concentrated on specific bugs, including ARBs
[48], concurrency bugs [49].

Here, we summarize several studies on regression bugs. Nir
et al. [50] found that regression bugs were usually caused by
encompassed bug fixes that were included in patches. Shihab et
al. [51] performed an industrial study on the risk of software
changes. In their work, they found that the number of bug
reports and the developer experience could be considered as
the best indicators of change risk. Khattar et al. [39] conducted
an in-depth characterization study of regression bugs on the
Google Chromium project. One interesting finding was that
51.09% of bugs in Google Chromium are regression bugs.

Regarding the software complex network analysis, several
studies have been performed. Large-scale software systems
can be considered to be one of the most sophisticated man-
made systems, which can be abstracted as networks [17].
An operating system is a typical software which provides
execution environments to the software that runs on the
system. In 2008, Zheng et al. [52] proposed two new network
growth models to better describe Gentoo Linux. Gao et al. [20]

modeled the kernel directory of the Linux kernel as a complex
network. In their work, it was found that the robustness of
the kernel network under intentional attacks, large in-degree
nodes providing basic services would cause more damage to
the whole system. Wang et al. [21] investigated the coupling
relationships among components in the Linux OS from the
perspectives of topology and function, and they further studied
the impact of failures on networks. Recently, Xiao et al. [22]
performed an evolution analysis of 62 major releases of the
Linux OS, including versions 1.0 to 4.1, from a complex
network perspective. The characteristics of the topological and
functional structure evolution of the Linux OS network were
revealed.

X. CONCLUSIONS AND FUTURE WORK

In this paper, a comprehensive empirical study of bug char-
acteristics within the Linux OS was performed based on 5741
bug reports from an evolution perspective. First, we present
the definition of bug class, and then the steps performed
for the manual inspection. The analysis was conducted from
the following four aspects: bug types, regression bugs, time
to fix and software metrics, along with several findings and
implications that can be useful to the developers and users of
the Linux OS. For example, consider Finding #6: it reveals that
driver bugs account for a large proportion of the Linux bugs. In
the testing of Linux, more efforts should be taken to the device
drivers. In addition, findings on software metrics demonstrate
that complex network metrics are useful for evaluating the
characteristics of bug types.

There is abundant future work to be done in this field. We
present the following directions that deserve to be pursued: 1)
the automatic classification of fault trigger-based bug types. In
our previous study [53], we utilized a deep learning method
to automatically classify bugs with an accuracy of 0.691. We
plan to improve this result by considering the characteristics of
bug types based on network metrics. 2) Automatic construction
of the relationships between regression bug reports and their
causes and fixes. It would be interesting to develop a technique
to formalize the regression relationship for further studying re-
gression bugs. 3) Use of the network metric analysis procedure
to examine the characteristics of bug types in other software
systems.

APPENDIX A
BUG TYPE EXAMPLES

Examples of fault trigger-based bug type classification and
examples of regression bug classification are depicted in the
Table A1 and Table A2, respectively.

APPENDIX B
LINUX OS NETWORK

Here, we illustrate the modeling of the Linux OS network,
and then provide the definitions of the selected complex net-
work metrics which are utilized to measure the characteristics
of bug types from a network perspective.

IEEE TRANSACTIONS ON RELIABILITY 19

TABLE A1
SOME EXAMPLES OF CLASSIFIED BUGS

ID Type Description

6045 NAM/TIM “Using the aic94xx/sas class driver...,intermittent
panic/hang on boot... due to a race condition
between device discovery of the root disk and an
attempt to mount the root file system”

7968 BOH “After booting (and during booting) the keyboard
LEDs (NumLock, CapsLock and ScrollLock)
don’t work (they’re always off).”

11805 NAM/ENV “mounting XFS produces a segfault...When there is
no memory left in the system, xfs buf get noaddr()
can fail.”

12684 NAM/LAG “After a suspend/resume, and a second suspend, the
machine refuses to resume... this could be rectified
by forcibly saving and restoring the ACPI non-
volatile state”

50181 ARB/MEM “After 20 hours of uptime, memory usage starts
going up...”

TABLE A2
SOME EXAMPLES OF REGRESSION BUGS AND THEIR BUG TYPES

ID Type Description

8736 NAM/TIM “Here is another scenario I bumped onto - qdisc
watchdog cancel() and qdisc restart() deadlock...
Please try reverting commit 1936502d0... This one is
a regression in 2.6.22”

11329 BOH “in git1 and previous, cpu0 vid is reported as 1475
(which is correct). Since git2, it is reported as 725”

15699 BOH “In 2.6.32 (and earlier), I was able to use the
rt2500usb driver with my D-Link DWL-G122 wire-
less NIC... Now, with 2.6.34-rc3-00191-gdb217de,
once I get an IP address via dhcpcd, it immediately
looses the connection”

16572 NAM/LAG “This did not occur with 2.6.33...I have not found a
reliable way to trigger the panics...The entry point on
NF FORWARD did not meet the requirements of the
IP stack, therefore leading to potential crashes/
panics... Reset IPCB when entering IP stack on NF
FORWARD”

84381 BOH “Starting with at least kernel 3.17.0rc4, the thinkpad
extra buttons...are no longer functioning and remain
unresponsive...The same configuration (same user
space) worked flawless on a vanilla 3.15.0.”

A. Network Modeling

The Linux kernel is implemented mainly based on C
programming language. The functionality realization of a C
language developed software system mainly depends on the
function calls, which can be commonly considered as a call
graph, as exhibited in Fig. A1. In this study, we define the
static call graph of the Linux kernel as a directed network
G(N,E), where N = {v1, v2, , vn} is the set of n nodes,
which represent functions in the source code of Linux kernel,
and E = {e1, e2, ..., em} is the set of m edges, each of
which, ei = (vs, vt)(i = 1, 2, ...,m), denote the call between

Fig. A1. A depiction for abstracting an example C language program as a
directed network. (a) is an illustration of the source code of the C language
program, whose static call graph that is depicted in (b) can be modeled as a
directed network.

each pair of functions, i.e., nodes vs and vt (vs, vt ∈ N).
In the study, we model the selected Linux OS as directed
networks and focus on the largest weakly connected part of
each network.

B. Network Metrics

We choose four representative complex network metrics,
in which two metrics are local properties, i.e., degree k and
clustering coefficient C, and the other metrics are global
properties, i.e., betweenness CB and closeness CC . The
definitions of these network metrics are provided as follows:

• Degree: The degree of a node in a network is the number
of edges connected to it. For a directed network, the
degree of a node has two types: in-degree and out-
degree. The in-degree of a node in the Linux OS network
denotes the number of functions calling it, while the out-
degree represents the number of functions that it calls. For
example, as shown in Fig. A1, the in-degree of func5 is 1,
whereas its out-degree is 2. The in-degree and out-degree
of a given node i are usually denoted as kini and kouti ,
respectively. In addition, the denotation of the undirected
degree of the node i is ki, which is expressed as

ki = kini + kouti (A1)

• Clustering Coefficient: The clustering coefficient is uti-
lized to measure the average probability that two neigh-
bors of a given node are themselves neighbors. In a Linux
OS network, a larger clustering coefficient of a node
indicates that there are more tightly connected interac-
tions of neighboring functions. To a directed network,
the clustering coefficient of a node i is calculated as [54]

Ci =
1

2

∑
j

∑
k (aij + aji)(aik + aki)(ajk + akj)

(kini + kouti)(kini + kouti − 1)− 2
∑

j aijaji
(A2)

where the value of aij is 1 if there exists an edge from
node i to j; otherwise, aij = 0. For example, as depicted
in Fig. A1, the clustering coefficient of func5 is 0.167.
The clustering coefficient of the entire network is denoted
as

IEEE TRANSACTIONS ON RELIABILITY 20

TABLE A3
DETAILED NUMBERS FOR TABLE X: kout

version
versionsum

kout versionave
kout versionmax

kout versionmin
kout

BOH MAN BOH MAN BOH MAN BOH MAN

2.6.0 15.25 21.87 9.25 10.96 10.69 14.33 7.94 7.97
2.6.20 20.63 27.44 9.38 8.66 11.83 14.06 7.00 4.88
2.6.23 13.09 22.82 8.92 9.44 10.55 12.18 7.45 6.88
2.6.24 18.04 20.21 9.58 12.02 11.83 14.30 7.85 9.70
2.6.25 11.40 22.94 7.26 10.20 8.60 14.85 6.25 7.74
2.6.26 15.86 26.11 9.77 13.14 11.14 16.31 8.75 10.97
2.6.27 20.91 27.03 10.59 12.32 15.56 17.86 6.38 8.10
2.6.28 13.46 20.04 7.45 10.27 9.35 12.11 6.06 8.75
2.6.29 16.08 22.17 10.49 11.35 12.31 14.50 9.16 8.58
2.6.30 18.67 24.86 10.57 9.02 12.62 12.34 8.67 6.34
2.6.31 15.98 20.51 8.99 11.96 10.78 15.88 7.55 8.90
2.6.32 13.81 25.13 8.21 8.93 10.13 12.88 6.55 5.50
2.6.33 22.31 17.72 11.65 8.78 14.81 10.00 9.89 7.67
2.6.34 11.78 20.59 8.49 11.00 9.13 13.95 8.03 9.41
2.6.35 15.23 17.50 9.80 6.05 11.57 7.82 8.77 4.50
2.6.36 16.53 17.86 8.98 10.41 11.00 12.21 7.25 8.83
2.6.37 18.48 18.95 9.34 11.10 11.20 14.38 7.78 8.48
2.6.38 14.75 23.06 8.53 9.46 9.90 11.67 7.25 7.39

TABLE A4
DETAILED NUMBERS FOR TABLE X: kin

version
versionsum

kin versionave
kin versionmax

kin versionmin
kin

BOH MAN BOH MAN BOH MAN BOH MAN

2.6.0 3.31 4.47 1.87 1.80 2.42 3.17 1.47 0.90
2.6.20 1.86 4.44 0.81 1.46 1.29 3.13 0.51 0.06
2.6.23 2.15 3.65 1.34 1.51 1.85 2.24 0.97 1.06
2.6.24 3.97 2.03 1.47 1.48 2.57 1.73 0.95 1.30
2.6.25 4.13 4.77 2.64 1.52 2.94 2.98 2.38 1.09
2.6.26 5.21 7.25 3.30 2.90 3.96 5.11 2.82 1.61
2.6.27 4.09 4.66 2.04 1.95 3.36 2.79 1.55 1.45
2.6.28 5.00 2.64 1.73 1.19 3.73 1.79 1.00 0.82
2.6.29 3.51 3.96 1.24 1.72 2.27 2.71 0.67 0.92
2.6.30 3.17 7.24 1.97 2.54 2.38 4.45 1.62 0.76
2.6.31 2.55 4.71 1.39 1.95 2.25 3.83 0.65 1.00
2.6.32 2.30 3.63 1.46 1.29 1.74 1.75 1.25 0.92
2.6.33 4.50 4.00 2.53 2.00 2.97 2.83 2.22 1.72
2.6.34 1.73 4.14 1.10 1.54 1.33 2.41 0.95 0.86
2.6.35 3.37 6.95 1.63 4.20 2.17 5.23 1.20 3.82
2.6.36 3.56 4.69 2.17 2.93 2.72 3.66 1.78 2.41
2.6.37 6.16 10.33 2.76 2.95 3.92 7.29 2.02 0.81
2.6.38 3.42 5.72 2.36 1.78 2.69 4.33 2.15 0.78

C =
1

n

n∑
i=1

Ci (A3)

• Betweenness: Betweenness is a shortest path-based met-
ric of the centrality in a network. It measures the number
of shortest paths that pass through a node. The expression
of the betweenness for a node i is given as [55]

CB(i) =
∑

s6=i 6=t

σst(i)

σst
(A4)

where σst is the total number of shortest paths from node
s to t, while σst(i) is the number of those paths that
through node i. To a large network, the normalization of
CB can be performed as in Eq. A5. For example, to the
network exhibited in Fig. A1, the betweenness of func5
is 1.

IEEE TRANSACTIONS ON RELIABILITY 21

TABLE A5
DETAILED NUMBERS FOR TABLE X: k

version
versionsum

k versionave
k versionmax

k versionmin
k

BOH MAN BOH MAN BOH MAN BOH MAN

2.6.0 18.56 26.33 11.11 12.77 12.83 16.20 9.64 9.47
2.6.20 22.49 31.88 10.18 10.12 12.60 16.50 7.89 5.25
2.6.23 15.24 26.47 10.26 10.96 12.21 13.41 8.55 8.71
2.6.24 22.01 22.24 11.05 13.49 14.03 15.70 9.09 11.24
2.6.25 15.52 27.70 9.90 11.72 11.37 17.11 8.79 9.09
2.6.26 21.07 33.36 13.07 16.04 14.71 20.61 11.68 12.81
2.6.27 25.00 31.69 12.63 14.27 18.15 19.72 8.25 10.03
2.6.28 18.46 22.68 9.18 11.46 12.57 13.18 7.54 9.96
2.6.29 19.59 26.13 11.73 13.06 14.20 16.58 10.00 10.13
2.6.30 21.83 32.10 12.54 11.56 14.38 15.38 10.88 7.66
2.6.31 18.53 25.22 10.37 13.91 12.75 19.24 8.37 10.12
2.6.32 16.11 28.75 9.67 10.22 11.55 14.17 8.06 6.75
2.6.33 26.81 21.72 14.18 10.79 17.31 12.00 12.39 9.61
2.6.34 13.50 24.73 9.59 12.54 10.33 15.77 9.05 10.68
2.6.35 18.60 24.45 11.43 10.25 13.57 12.77 10.09 8.55
2.6.36 20.09 22.55 11.15 13.34 13.28 14.93 9.41 11.90
2.6.37 24.64 29.29 12.10 14.04 14.58 20.67 10.16 9.81
2.6.38 18.17 28.78 10.89 11.24 12.29 15.56 9.56 8.67

TABLE A6
DETAILED NUMBERS FOR TABLE X: C

version
versionsum

C versionave
C versionmax

C versionmin
C

BOH MAN BOH MAN BOH MAN BOH MAN

2.6.0 0.1308 0.1134 0.0692 0.0563 0.0888 0.0777 0.0525 0.0388
2.6.20 0.1001 0.1315 0.0452 0.0393 0.0604 0.0817 0.0320 0.0224
2.6.23 0.0565 0.0630 0.0391 0.0203 0.0471 0.0357 0.0319 0.0107
2.6.24 0.0784 0.0707 0.0419 0.0393 0.0546 0.0566 0.0333 0.0260
2.6.25 0.0662 0.0746 0.0377 0.0289 0.0507 0.0509 0.0290 0.0203
2.6.26 0.0844 0.0599 0.0358 0.0219 0.0546 0.0334 0.0223 0.0134
2.6.27 0.0854 0.1408 0.0427 0.0569 0.0612 0.0941 0.0317 0.0371
2.6.28 0.0651 0.0606 0.0354 0.0264 0.0538 0.0371 0.0236 0.0170
2.6.29 0.0541 0.1038 0.0326 0.0370 0.0422 0.0728 0.0256 0.0160
2.6.30 0.0729 0.0879 0.0387 0.0357 0.0541 0.0568 0.0277 0.0252
2.6.31 0.0524 0.0437 0.0330 0.0232 0.0412 0.0340 0.0264 0.0167
2.6.32 0.0615 0.1258 0.0371 0.0494 0.0477 0.0752 0.0293 0.0371
2.6.33 0.0748 0.0665 0.0276 0.0238 0.0498 0.0314 0.0144 0.0165
2.6.34 0.0516 0.1003 0.0351 0.0474 0.0415 0.0686 0.0307 0.0336
2.6.35 0.0638 0.0845 0.0427 0.0301 0.0521 0.0543 0.0363 0.0176
2.6.36 0.0733 0.0634 0.0384 0.0435 0.0547 0.0511 0.0256 0.0384
2.6.37 0.0994 0.0643 0.0303 0.0335 0.0513 0.0487 0.0202 0.0219
2.6.38 0.0989 0.0734 0.0601 0.0354 0.0797 0.0518 0.0456 0.0236

C
′

B(i) =
CB(i)−min(CB)

max(CB)−min(CB)
(A5)

• Closeness: Closeness is another metric of centrality. It is
calculated as the sum of the length of the shortest paths
between a node and all the other nodes in the network.
A larger closeness of a node means that it locates more
central in the network and is closer to all other nodes.

The definition of closeness for a given node i is [55]

CC(i) =
1∑

j 6=i d(i, j)
(A6)

where d(i, j) is the distance between nodes i and j. In
addition, the normalization of CC is represented as in Eq.
A7. For example, to the network depicted in Fig. A1, the
closeness of func5 is 1.

C
′

C(i) = (n− 1)CC(i) (A7)

IEEE TRANSACTIONS ON RELIABILITY 22

TABLE A7
DETAILED NUMBERS FOR TABLE X: CB

version
versionsum

CB
versionave

CB
versionmax

CB
versionmin

CB

BOH MAN BOH MAN BOH MAN BOH MAN

2.6.0 0.0009 0.0079 0.0005 0.0062 0.0007 0.0077 0.0004 0.0055
2.6.20 0.0002 0.0006 0.0001 0.0003 0.0002 0.0005 0.0001 0.0000
2.6.23 0.0004 0.0002 0.0002 0.0002 0.0004 0.0002 0.0001 0.0001
2.6.24 0.0089 0.0001 0.0029 0.0001 0.0088 0.0001 0.0001 0.0001
2.6.25 0.0006 0.0056 0.0006 0.0015 0.0006 0.0038 0.0006 0.0003
2.6.26 0.0007 0.0462 0.0006 0.0150 0.0006 0.0457 0.0005 0.0002
2.6.27 0.0011 0.0296 0.0005 0.0099 0.0011 0.0287 0.0004 0.0003
2.6.28 0.0005 0.0002 0.0002 0.0002 0.0004 0.0002 0.0001 0.0002
2.6.29 0.0002 0.0009 0.0001 0.0003 0.0002 0.0008 0.0000 0.0000
2.6.30 0.0011 0.0030 0.0008 0.0010 0.0010 0.0015 0.0006 0.0004
2.6.31 0.0016 0.0013 0.0005 0.0007 0.0016 0.0012 0.0001 0.0002
2.6.32 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000
2.6.33 0.0007 0.0004 0.0004 0.0004 0.0006 0.0004 0.0001 0.0003
2.6.34 0.0032 0.0045 0.0024 0.0022 0.0030 0.0028 0.0019 0.0017
2.6.35 0.0004 0.0011 0.0001 0.0010 0.0004 0.0011 0.0000 0.0010
2.6.36 0.0012 0.0012 0.0011 0.0010 0.0012 0.0011 0.0011 0.0010
2.6.37 0.0004 0.0002 0.0002 0.0001 0.0003 0.0002 0.0001 0.0000
2.6.38 0.0004 0.0002 0.0001 0.0001 0.0002 0.0001 0.0000 0.0001

TABLE A8
DETAILED NUMBERS FOR TABLE X: CC

version
versionsum

CC
versionave

CC
versionmax

CC
versionmin

CC

BOH MAN BOH MAN BOH MAN BOH MAN

2.6.0 0.3123 0.4113 0.2232 0.1679 0.2608 0.2736 0.1901 0.0973
2.6.20 0.1883 0.2674 0.1075 0.0663 0.1382 0.1365 0.0869 0.0371
2.6.23 0.2248 0.5207 0.1477 0.1665 0.1799 0.3029 0.1209 0.0884
2.6.24 0.3432 0.2286 0.1439 0.1258 0.2053 0.1648 0.1030 0.0906
2.6.25 0.2904 0.3340 0.1692 0.1227 0.1954 0.2121 0.1469 0.0929
2.6.26 0.2908 0.3344 0.1687 0.1495 0.2132 0.2432 0.1523 0.1070
2.6.27 0.3974 0.3740 0.1835 0.1678 0.2438 0.2452 0.1306 0.1397
2.6.28 0.3709 0.2287 0.2052 0.1554 0.2706 0.1581 0.1718 0.1528
2.6.29 0.2483 0.2719 0.1133 0.1101 0.1704 0.1345 0.0820 0.0858
2.6.30 0.2733 0.2839 0.1687 0.1331 0.2031 0.1848 0.1417 0.1123
2.6.31 0.2813 0.4713 0.1941 0.1897 0.2246 0.2842 0.1640 0.1267
2.6.32 0.4401 0.5201 0.2731 0.1981 0.3338 0.2933 0.2287 0.1707
2.6.33 0.4291 0.4872 0.1671 0.1820 0.2397 0.2443 0.1314 0.1540
2.6.34 0.2742 0.2678 0.2230 0.1575 0.2444 0.2151 0.2019 0.1232
2.6.35 0.4080 0.4609 0.2316 0.1640 0.2765 0.2916 0.2004 0.0916
2.6.36 0.3866 0.3427 0.2186 0.1814 0.2913 0.2170 0.1761 0.1566
2.6.37 0.6831 0.2443 0.2382 0.1312 0.3248 0.1888 0.1676 0.1058
2.6.38 0.3412 0.5758 0.2043 0.1643 0.2605 0.2336 0.1642 0.0810

APPENDIX C
DETAILED NUMBERS

The detailed numbers of network metrics of bug types for
Section VII.B are provided in Table A3 through Table A8.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Wen-Bo Du from
Beihang University for kindly providing valuable technical
advice on this manuscript.

REFERENCES

[1] (2017) LWN Distributions List. [Online]. Available:
https://lwn.net/Distributions/

[2] (2017) Kernel.org Bugzilla Main Page. [Online]. Available:
https://bugzilla.kernel.org/

[3] (2017) Coverity Scan - Static Analysis. [Online]. Available:
https://scan.coverity.com/

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proc. ACM SIGOPS Operating
Systems Review, vol. 35, no. 5, 2001, pp. 73–88.

[5] P. J. Guo and D. R. Engler, “Linux kernel developer responses to static

IEEE TRANSACTIONS ON RELIABILITY 23

analysis bug reports.” in Proc. USENIX Annual Technical Conference,
2009, pp. 285–292.

[6] M. F. Ahmed and S. S. Gokhale, “Linux bugs: Life cycle, resolution and
architectural analysis,” Inf. Softw. Technol., vol. 51, no. 11, pp. 1618–
1627, Nov. 2009.

[7] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: Ten years later,” in Proc. ACM SIGPLAN Notices,
vol. 46, no. 3, 2011, pp. 305–318.

[8] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in Proc.
IEEE International Symposium on Software Reliability Engineering
(ISSRE’13), Pasadena, USA, Nov. 2013, pp. 178–187.

[9] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug character-
istics in open source software,” Empir. Softw. Eng., vol. 19, no. 6, pp.
1665–1705, Dec. 2014.

[10] J. Gray, “Why do computers stop and what can be done about it?”
in Proc. IEEE Symposium on Reliability in Distributed Software and
Database Systems (SRDS’86), Los Angeles, USA, Jan. 1986, pp. 3–12.

[11] M. Grottke and K. Trivedi, “Software faults, software aging and software
rejuvenation,” J. Rel. Eng. Assoc. Japan, vol. 27, no. 7, pp. 425–438,
Oct. 2005.

[12] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, Feb. 2007.

[13] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: Analysis, module and applications,” in Proc. IEEE International
Symposium on Fault-Tolerant Computing (FTCS’95), Pasadena, USA,
Jun. 1995, pp. 381–390.

[14] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. IEEE International Conference on Software Reliability
Engineering Workshops (ISSREW’08), Seattle, USA, Nov. 2008, pp. 1–
6.

[15] A. Israeli and D. G. Feitelson, “The linux kernel as a case study in
software evolution,” J. Syst. Softw, vol. 83, no. 3, pp. 485–501, Mar.
2010.

[16] J. Johnson, J. Kenefick, and P. Larson, “Hunting regressions in gcc and
the linux kernel,” 2004.

[17] C. R. Myers, “Software systems as complex networks: Structure, func-
tion, and evolvability of software collaboration graphs,” Phys. Rev. E,
vol. 68, no. 4, p. 046116, Oct. 2003.

[18] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a
large object-oriented software system,” IEEE Trans. Softw. Eng., vol. 33,
no. 10, pp. 687–708, Oct. 2007.

[19] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,”
ACM Trans. Softw. Eng. Methodol., vol. 18, no. 1, p. 2, Sep. 2008.

[20] Y. Gao, Z. Zheng, and F. Qin, “Analysis of linux kernel as a complex
network,” Chaos Solitons Fractals, vol. 69, pp. 246–252, Dec. 2014.

[21] H. Wang, Z. Chen, G. Xiao, and Z. Zheng, “Network of networks in
linux operating system,” Physica A, vol. 447, pp. 520–526, Apr. 2016.

[22] G. Xiao, Z. Zheng, and H. Wang, “Evolution of linux operating system
network,” Physica A, vol. 466, pp. 249–258, Jan. 2017.

[23] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K. Cai, “Experience
report: Fault triggers in linux operating system: From evolution perspec-
tive,” in Proc. IEEE International Symposium on Software Reliability
Engineering (ISSRE’17), Toulouse, France, Oct. 2017, pp. 101–111.

[24] (2017) The Linux Kernel Archives. [Online]. Available:
https://www.kernel.org/

[25] D. G. Feitelson, “Perpetual development: a model of the linux kernel
life cycle,” J. Syst. Softw, vol. 85, no. 4, pp. 859–875, Apr. 2012.

[26] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[27] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, p. 10, Aug. 2011.

[28] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in Proc. IEEE International
Conference on Software Engineering (ICSE’13), San Francisco, USA,
May 2013, pp. 392–401.

[29] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in Proc. IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN’10),
Chicago, USA, Jul. 2010, pp. 447–456.

[30] F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. S. Trivedi, “An empirical
investigation of fault triggers in android operating system,” in Proc.
IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC’17), Christchurch, New Zealand, Jan. 2017, pp. 135–144.

[31] P. Larson, “Testing linux R© with the linux test project,” in Proc. Ottawa
Linux Symposium, 2002, p. 265.

[32] Z. B. Ratliff, D. R. Kuhn, R. N. Kacker, Y. Lei, and K. S. Trivedi, “The
relationship between software bug type and number of factors involved
in failures,” in Proc. IEEE International Symposium on Software Relia-
bility Engineering Workshops (ISSREW’16), Ottawa, Canada, Oct. 2016,
pp. 119–124.

[33] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation
and availability assurance techniques,” Int. J. Syst. Assur. Eng. Manag.,
vol. 1, no. 4, pp. 340–350, Dec. 2010.

[34] J. Corbet. (2006) Detecting kernel memory leaks [LWN.net]. [Online].
Available: https://lwn.net/Articles/187979/

[35] D. Marjamäki, “Cppcheck: a tool for static c/c++ code analysis,” 2013.
[36] H. B. Mann, “Nonparametric tests against trend,” Econometrica J.

Econometric Soc., pp. 245–259, Jul. 1945.
[37] M. G. Kendall, Rank correlation methods. Oxford, England: Griffin,

1948.
[38] L. A. Torrey, J. Coleman, and B. P. Miller, “A comparison of interactivity

in the linux 2.6 scheduler and an mlfq scheduler,” Softw.-Pract. Exp.,
vol. 37, no. 4, pp. 347–364, Apr. 2007.

[39] M. Khattar, Y. Lamba, and A. Sureka, “Sarathi: Characterization study
on regression bugs and identification of regression bug inducing changes:
A case-study on google chromium project,” in Proc. ACM India Software
Engineering Conference (ISEC’15), 2015, pp. 50–59.

[40] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution
of the linux kernel variability model,” Software Product Lines: Going
Beyond, pp. 136–150, 2010.

[41] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. crc Press, 2003.

[42] “I. S. 1044-2009, Standard Classification for Software Anomalies,”
2010.

[43] R. B. Grady, Practical software metrics for project management and
process improvement. Upper Saddle River, NJ: Prentice-Hall, Inc.,
1992.

[44] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,
B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-a concept
for in-process measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11,
pp. 943–956, Nov. 1992.

[45] E. Raymond, Ed, The New Hacker’s Dictionary. Cambridge, MA: MIT
Press, 1991.

[46] S. Chandra and P. M. Chen, “Whither generic recovery from application
faults? a fault study using open-source software,” in Proc. IEEE Inter-
national Conference on Dependable Systems and Networks (DSN’00),
New York, USA, Jun. 2000, pp. 97–106.

[47] D. Cotroneo, R. Pietrantuono, S. Russo, and K. Trivedi, “How do bugs
surface? a comprehensive study on the characteristics of software bugs
manifestation,” J. Syst. Softw, vol. 113, pp. 27–43, Mar. 2016.

[48] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software aging
analysis of the linux operating system,” in Proc. IEEE International
Symposium on Software Reliability Engineering (ISSRE’10), San Jose,
USA, Nov. 2010, pp. 71–80.

[49] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in Proc. ACM Sigplan Notices, vol. 43, no. 3, 2008, pp. 329–339.

[50] D. Nir, S. Tyszberowicz, and A. Yehudai, “Locating regression bugs,”
in Proc. Springer Haifa Verification Conference, 2007, pp. 218–234.

[51] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial study
on the risk of software changes,” in Proc. ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE’12), Cary,
USA, Nov. 2012, p. 62.

[52] X. Zheng, D. Zeng, H. Li, and F. Wang, “Analyzing open-source
software systems as complex networks,” Physica A, vol. 387, no. 24,
pp. 6190–6200, Oct. 2008.

[53] X. Du, Z. Zheng, G. Xiao, and B. Yin, “The automatic classification of
fault trigger based bug report,” in Proc. IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW’17), Toulouse,
France, Oct. 2017, pp. 259–265.

[54] G. Fagiolo, “Clustering in complex directed networks,” Phys. Rev. E,
vol. 76, no. 2, p. 026107, Aug. 2007.

[55] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Soc. Networks, vol. 1, no. 3, pp. 215–239, Jan. 1978.

IEEE TRANSACTIONS ON RELIABILITY 24

Guanping Xiao received his B.Sc from Nanjing
University of Aeronautics and Astronautics in 2012
and M.Sc. from Civil Aviation University of China in
2015. He is currently a Ph.D. candidate at Beihang
University. His research interests include software
reliability, and software complex networks.

Zheng Zheng received Ph.D. degree in computer
software and theory in Chinese Academy of Sci-
ence. In 2014 he was with Department of Electri-
cal and Computer Engineering at Duke University,
working as a research scholar. He is currently an
Associate Professor at Beihang University of China.
His research interests include software dependability
modeling, and software fault localization.

Beibei Yin received the Ph.D. degree from Beihang
University (Beijing University of Aeronautics and
Astronautics), Beijing, China, in 2010. She has been
a Lecturer with Beihang University since 2010.
Her main research interests include software testing,
software reliability, and software cybernetics.

Kishor S. Trivedi holds the Fitzgerald Hudson
Chair in the Department of Electrical and Computer
Engineering at Duke University. He is a Life Fel-
low of the Institute of Electrical and Electronics
Engineers and a Golden Core Member of IEEE
Computer Society. His research interests are in re-
liability, availability, performance and survivability
of computer and communication systems and in
software dependability.

Xiaoting Du received her B.Sc in Automation from
Yantai University. She is currently a master student
at Beihang University. Her research interests include
software reliability, and software testing.

Kaiyuan Cai received the B.S., M.S., and Ph.D.
degrees from Beihang University (Beijing University
of Aeronautics and Astronautics), Beijing, China, in
1984, 1987, and 1991, respectively. He has been a
Full Professor at Beihang University since 1995. His
main research interests include software testing, soft-
ware reliability, reliable flight control, and software
cybernetics.

