
An Empirical Study on Common Bugs in Deep
Learning Compilers

Xiaoting Du
Beihang University, China
xiaoting 2015@buaa.edu.cn

Zheng Zheng∗
Beihang University, China
zhengz@buaa.edu.cn

Lei Ma
University of Alberta, Canada

ma.lei@acm.org

Jianjun Zhao
Kyushu University, Japan
zhao@ait.kyushu-u.ac.jp

Abstract—The highly diversified deep learning (DL) frame-
works and target hardware architectures bring big challenges
for DL model deployment for industrial production. Up to
the present, continuous efforts have been made to develop DL
compilers with multiple state-of-the-arts available, e.g., TVM,
Glow, nGraph, PlaidML, and Tensor Comprehensions (TC).
Unlike traditional compilers, DL compilers take a DL model
built by DL frameworks as input and generate optimized code
as the output for a particular target device. Similar to other
software, DL compilers are also error-prone. Buggy DL compilers
can generate incorrect code and result in unexpected model
behaviors. To better understand the current status and common
bug characteristics of DL compilers, we performed a large-
scale empirical study of five popular DL compilers covering
TVM, Glow, nGraph, PlaidML, and TC, collecting a total of
2,717 actual bug reports submitted by users and developers. We
made large manual efforts to investigate these bug reports and
classified them based on their root causes, during which five
root causes were identified, including environment, compatibility,
memory, document, and semantic. After labeling the types of
bugs, we further examined the important consequences of each
type of bug and analyzed the correlation between bug types and
impacts. Besides, we studied the time required to fix different
types of bugs in DL compilers. Seven important findings are
eventually obtained, with practical implications provided for both
DL compiler developers and users.

Index Terms—empirical study, deep learning compiler, bug,
root cause, impact

I. INTRODUCTION

Deep learning (DL) has been rapidly developed and success-

fully applied in many industrial domains, such as autonomous

driving [1], smart city [2], disease diagnosis [3], and many

others [4]–[6]. Various DL models with different architecture,

such as Convolutional Neural Network (CNN) [7], Recurrent

Neural Network (RNN) [8], transformer with attention mech-

anism [9], and Graph Neural Networks (GNN) [10] have been

designed to deal with different kinds of tasks. As the foun-

dation to support the training process and runtime inference,

multiple popular DL frameworks have been developed so far,

such as TensorFlow [11], PyTorch [12], MXNET [13] and

CNTK [14]. These frameworks provide convenient interfaces

for users to implement their DL model construction and

training and deploy them on specific hardware devices that

support the corresponding DL framework.

At the same time, we have witnessed an increasing trend and

demand for deploying DL models to diverse end devices [15],

∗Corresponding author: Zheng Zheng.

[16]. In addition, quite a few DL chips with different architec-

tures have been designed to boost performance, such as CPU,

Google TPU [17], Hisilicon NPU [18], Apple Bonix [19],

Intel NNP [20] as well as chips on small mobiles or edge

devices [21]. However, it is still a challenge for DL frame-

works to handle diverse hardware-specific transformations

and DL model deployment across different target devices.

To address this problem, several popular DL compilers have

been proposed from both industry and academia, such as

TVM [22], XLA [23], Glow [24], nGraph [25], PlaidML [26],

and Tensor Comprehensions (TC) [27]. DL compilers take

DL models constructed in a DL framework as input and

generate optimized codes for diverse DL hardware as output,

which performs an important role for DL model performance

acceleration and diverse architecture hurdles.

Similar to traditional compilers, DL compilers also follow

a layered design, including a frontend, an intermediate rep-

resentation (IR) and a backend [28]. However, what makes

DL compilers special is their multi-level IR and DL-specific

optimization design. Specifically, DL compilers combine DL-

oriented optimizations such as layer and operator fusion to

achieve efficient code generation [29]. Like any software

system, bugs can also commonly exist in DL compilers. The

buggy DL compilers can cause misbehavior and even disaster

when mis-compiled DL models are deployed to mission-

critical applications. Therefore, the investigation of common

bug characteristics in DL compilers should help design specific

bug detection and localization methods, which are important

for improving the quality and availability of DL compilers.

In this paper, we make a very early attempt to study the

characteristics of bugs in DL compilers by analyzing 2,717

bugs collected from five popular DL compilers, including

TVM, nGraph, Glow, PlaidML, and TC. The characteristics

of bugs in DL compilers have been investigated from multiple

aspects, including � the root causes of bugs in DL compilers;

� the impacts of bugs in DL compilers and the correlation

between bug types and impacts; � the time it takes to fix

bugs in DL compilers. The contribution of our work provides

answers to the following three research questions.

RQ1: What common types of bugs exist in various DL
compilers? To answer this question, we have classified the

bugs in TVM, Glow, nGraph, PlaidML, and TC by analyzing

their root causes. Through manual examination, five root

causes are identified, including environment, compatibility,

184

2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/21/$31.00 ©2021 IEEE
DOI 10.1109/ISSRE52982.2021.00030

Fig. 1. The adopted procedure and workflow of bug report classification.

memory, document, and semantic. The distribution of different

types of bugs is also studied. In addition, we have analyzed

the evolution of proportions of different bug types over time.

This RQ is answered in Section III.

RQ2: What are the impacts of different types of bugs in
DL compilers? We have identified the impacts of bugs in DL

compilers to understand the consequences caused by different

types of bugs. Besides, we have studied the relationship

between root causes and impacts of DL compiler bugs, which

helps to understand which types of bugs are more likely to

have a more severe impact. This RQ is answered in Section IV.

RQ3: How long does it take to fix bugs in DL compilers?
We have performed a statistical analysis of the time it takes

to fix the bugs in DL compilers. This RQ helps us notice the

cost of repairing different types of bugs and therefore helps to

allocate resources better. This RQ is answered in Section V.

Due to the page limit, in this paper, we provided summa-

rized results and discussions and put more detailed information

on the accompanied website of this paper, at https://sites.

google.com/view/dlcompiler-common-bugs/, including the de-

tailed information of all bug reports extracted from DL com-

pilers’ Github repositories, the closing time of all bug reports,

and more details and concrete examples of each type of bugs,

etc.

The rest of the paper is structured as follows. Section II

presents the study design and methodology adopted in this

paper. We give the answers for the three research questions

in Section III, Section IV, and Section V, respectively. After

discussing the threats to validity in Section VI and related

work in Section VII, conclusions are given in Section VIII.

II. STUDY DESIGN AND METHODOLOGY

A. Data Collection

In this paper, we conduct our empirical study on five cur-

rently popular DL compilers, including TVM, Glow, nGraph,

PlaidML, and Tensor Comprehensions (TC). We collect actual

bug information of these compilers from their corresponding

Github repositories. Table I summarizes the information of the

collected bug reports.

In Table I, all bug reports are under the closed status. In

Github’s issue tracker, bug reports have two statuses: “open”

and “closed”. Considering that reports in the “open” state are

still under discussion, their root causes may not have been

found yet. Thus, only “closed” bug reports will be studied in

this work. The second column shows the time period of bug

reports. We collected as many closed bug reports as we could

from TVM, Glow, nGraph, PlaidML, and TC. Among them,

the time range of TVM, Glow, nGraph, and PlaidML is from

2017 to 2021, from when the first report is submitted to when

the latest report is submitted. Different from the above four

DL compilers, the time range of TC is from Feb. 2018 to

Aug. 2019, a total of 18 months. It is because TC is no longer

maintained, and no bug report has been closed since Aug. 27,

2019. After filtering, we collected 1,578 bug reports in TVM1,

496 bug reports in Glow2, 239 bug reports in nGraph3, 290 bug

reports in PlaidML4, and 114 bug reports in TC5. Therefore,

a total of 2,717 bug reports are obtained.
We obtain relevant bug information from these 2,717 bug

reports through a designed Web-Crawler. The important in-

formation contained in bug reports is extracted, including

both structural information and non-structural information.

Among them, structural information includes the time of bug

reports being submitted and closed. Non-structural information

includes titles of bug reports, descriptions and comments of

bugs, and linked commits and pull requests for resolving bugs.

B. Classification Procedure of Bug Reports
In this section, we manually review the description and

comments of each bug report. Because the description in some

bug reports can be ambiguous, we also explore related pull

requests and commits for further confirmation. For a given bug

report, the classification process is divided into three steps, as

shown in Fig. 1.
Step 1: Actual bug filtering. A bug report should first be

checked to make sure that it contains an actual bug. In our

1https://github.com/apache/tvm/issues
2https://github.com/pytorch/glow/issues
3https://github.com/NervanaSystems/ngraph/issues
4https://github.com/plaidml/plaidml/issues
5https://github.com/facebookresearch/TensorComprehensions/issues

185

TABLE I
SUMMARY OF SUBJECT OF DATA SET FOR STUDY (ALL BUG REPORTS

ARE UNDER THE CLOSED STATUS)

Compiler Time frame # of reports
TVM Oct. 13, 2017 - Jan. 7, 2021 1,578

Glow Nov. 20, 2017 - Apr. 9, 2021 496

nGraph Jul. 25, 2017 - Jan. 27, 2021 239

PlaidML Oct. 20, 2017 - Apr.11, 2021 290

TC Feb. 14, 2018 - Aug. 27, 2019 114

Total 2,717

study, invalid bug reports will be filtered out first, i.e., the bug

report contains too little information to determine whether it

is a bug. For example, many bug reports were closed in DL

compilers due to lack of activity, obsolescence, or cannot be

reproduced. Then, valid bug reports that do not contain actual

bugs will be filtered out, i.e., questions asked by users about

the usage of the DL compilers, requests for new features or

enhancements, operator errors and duplicate bug reports.

Step 2: Classification based on root causes. We carefully

checked the bug report for each actual bug that was filtered

from the last step to identify its root cause. According to

our examination, we summarized five types of root causes,

including environment, compatibility, memory, document, and

semantic. The definition of each root cause will be given in

section II-C. If there is not enough information to determine

the root cause of a bug, it will be labeled as unknown (UNK).

Step 3: Identifying impacts of bugs. After classifying bugs

according to their root causes, we aim to identify the impacts

of different types of bugs. After analysis, five common impacts

are found, including crash/exception, build/compilation error,

operation failure, wrong output, and warning style error. If we

cannot identify the impact of a bug, or if the impact does not

belong to any of the five impacts we listed above, we will label

it as others. The definition of each impact will be introduced

in section II-D.

C. Root Causes of Bugs

This section aims to present some examples of different

root causes (as listed in Table II). In addition, referring to the

definitions in [30] and [31], we describe the following five

root causes as follows.

• Environment: These errors are not directly related to DL

compilers. They are errors that exist in frontend frameworks

that export DL models (such as TensorFlow, MXNET,

Pytorch, and Keras), underlying operating systems (such as

MacOS), deployed tool-chains (such as LLVM, g++ and

OpenCL) or dependent libraries (such as DMLC-Core).

• Compatibility: The program cannot normally run on specific

hardware (e.g., CPU, MobileGPU), operating system (e.g.,

AMD, Windows), or a different endian type system (e.g.,

big-endian or little-endian). In addition, there are situations

that a DL compiler cannot compile models from a specific

framework (e.g., TensorFlow) or cannot run on a specified

version of a toolkit (e.g., CUDA).

• Document: This kind of error is related to typos in exam-

ples, improperly recommended operations in instructions,

outdated guidelines, missing items in guidelines or dead

links in guidelines.

• Memory: These errors are caused by incorrect handling of

memory objects, such as insufficient memory allocation, im-

proper scheduling of shared memory or unreleased memory.

• Semantic: Inconsistent with the requirements or the pro-

grammer’s intention and do not belong to the above cat-

egories. Including features that should be but not imple-

mented, some boundary cases are incorrectly considered

or ignored, improper handling of exceptions, incorrectly

displayed output, equations processed improperly, and other

semantic bugs that do not meet the design requirements.

D. Impacts of Bugs

In this section, we have investigated the impact of each bug

to understand the consequences of bugs in DL compilers [32],

[33]. The definition of each kind of impact is as follows.

• Crash/exception: If a DL compiler stops and exits un-

expectedly, a crash/exception occurs. When this situation

happens, the program typically throws an error message. For

example, in Bug-1624 in TVM, an error was raised when

the reporter uses auto-tvm to train a model that contained

“conv2d transpose”.

• Build/compilation error: If a build or compilation error

is printed, a build/compilation error occurs. For example,

in Bug-4135 in Glow, the build of Glow failed when “-

DGLOW BUILD TESTS=OFF”.

• Operation failure: If unexpected behaviors, such as rejec-

tion of a task or multiple processing of a task, is encoun-

tered, it means an operation failure occurs. In DL compilers,

installation failure, setup incomplete issue, and broke link

caused download failure are considered as operation failures.

• Wrong output: If the program generates a wrong result and

presents it to users, a wrong output occurs. For example,

incorrect code output of DL compilers, wrong output from

the scheduler, incorrect quantified nodes, not optimized

graph output, incorrect classification results, and misleading

log information, etc.

• Warning style error: If the program generates a warning

message, a warning style error occurs. In addition, document

issues such as incomplete and outdated documents, unneces-

sary warnings, performance degradation, and memory leak

issues are considered as warning style errors.

III. DISTRIBUTION OF BUG TYPES

This section aims to answer RQ1. We first filter out the

actual bugs from all reports and then classify them according

to their root causes. Finally, the frequency distribution of bugs

and the evolution trend of the proportions of different types

of bugs are analyzed.

186

TABLE II
EXAMPLES OF ROOT CAUSES

Compiler Bug ID Root Cause Description
TVM 998 Environment “This might due to the problem of MXNet’s DLPack layer creating wrong

DLTensor”

nGraph 3907 Compatibility “I faced an issue that as type ptr doesn’t work for this cast: TensorIter-
ator::InputDescription to TensorIterator::SliceInputDescription, ... This issue
occurs only on Win10 platform.”

Glow 366 Memory “readPngImage() leaks memory when image fails to read”

PlaidML 237 Document “OpenCL HAL example link is dead.”

TC 193 Semantic “autotuner should catch compilation failures”

Fig. 2. Distribution of actual bugs, non-bugs, and invalid reports.

A. Distribution of Actual bugs, Non-bugs, and Invalid Reports
Among all Bug Reports

Finding #1: The ratio of actual bugs among all the

submitted bug reports in DL compilers ranges from 17.6%

to 31.6%.

From Fig. 2, we can see that among all the bug reports,

the proportion of non-bugs is the highest. In TVM, Glow,

nGraph, PlaidML, and TC, the percentages of non-bugs are

64.8%, 73.8%, 63.2%, 71.0%, and 62.3%, respectively. As for

actual bugs, the proportion of actual bugs in TC is the highest,

which is 31.6%, followed by nGraph (i.e., 28.5%), TVM

(i.e., 25.0%), Glow (i.e., 24.2%), and PlaidML (i.e., 17.6%).

In addition to actual bugs and non-bugs, the proportion of

invalid reports in DL compilers is not negligible. In PlaidML,

the proportion of invalid reports is the highest (i.e., 11.4%),

followed by TVM (i.e., 10.3%). In nGraph and TC, the

proportions of invalid reports are 8.4% and 6.1%, respectively.

In Glow, the percentage of invalid reports is the lowest (i.e.,

2.0%).

This finding shows that a large number of non-bugs and

invalid reports were submitted, which could be a heavy

burden for developers. According to our examination, in DL

compilers, there are several typical situations in which non-

bugs appear, including questions asked by reporters for the

usage of DL compilers (e.g., in Bug-385 and Bug-493 in

TVM, reporters asked “How to reproduce the Raspberry Pi

experiment” and “How to install the libtvm.dll”, respectively),

Fig. 3. Distribution of root causes of bugs.

reports submitted by developers related to the implementation

of new features (for example, in Bug-3 and Bug-6 in nGraph,

developers added a way to check code styling and added

setup instructions for Ubuntu 14.04 LTS), feature requests

proposed by users (for example, in Bug-104 and Bug-130 in

TC, reporters asked developers to support TC on macOS and

PyTorch master), and duplicate bug reports. Through manual

inspection, the numbers of duplicate bug reports in TVM,

Glow, PlaidML, and TC are 32, 9, 20, and 5, respectively.

There is no duplicate bug report in nGraph.

B. Bug Type Distribution Among Different DL Compilers

Finding #2: The major bug types in DL compilers are

semantic and compatibility bug.

Fig. 3 presents the distribution of the root causes of bugs

in the five DL compilers we analyzed. According to the

results, it is obvious that more than half of the bugs in DL

compilers are semantic bugs. Glow has the highest proportion

of semantic bugs, which is 76.7%, followed by TVM (i.e.,

74.1%), nGraph (i.e., 69.1%), TC (i.e., 63.9%), and PlaidML

(i.e., 60.8%). Compared with other software systems, the

proportion of semantic bugs in DL compilers is lower than

that in Mozilla and Apache. According to the study in [32],

semantic bugs account for 87.0% in Mozilla and 82.5% in

Apache. However, the results of DL compilers are similar

to the blockchain systems. In [31], the authors investigated

the frequency distribution of bug categories in 8 blockchain

187

Fig. 4. Evolution of proportions of actual bugs and non-bugs.

systems. They found that 67.23% of the bugs in blockchain

systems are semantic bugs.

Compatibility is the second most frequently appeared root

cause in TVM, Glow, nGraph, and PlaidML, with the pro-

portions being 11.4%, 9.2%, 11.8%, and 13.7% respectively.

Different from the four DL compilers mentioned above, the

second most common bug type in TC is document, accounting

for 16.7%. Environment and memory bugs only account for

a small portion. The percentages of environment bugs in

TVM, Glow, nGraph, PlaidML, and TC are 4.6%, 3.3%,

7.4%, 11.8%, and 8.3%, respectively. Memory bugs account

for 1.8%, 2.5%, 1.5%, and 2.0% in TVM, Glow, nGraph, and

PlaidML, respectively. And no memory bug is reported in TC.

Through further examination, we found that in DL compil-

ers, a number of semantic bugs are related to missing cases

in the implementation of functions, also known as neglected

condition bugs [34]. For example, in Bug-1592 in TVM, it

was stated that “[Pass] Missing CHECK in storage rewrite”.

In this bug, if “max num bits<640”, an allocation that ex-

ceeds the memory bounds will be triggered. In Bug-6239 in

TVM, “NotImplementedError” occurred due to missing oper-

ator “is floating point”. Installation and setup issues are also

common occurrences in semantic bugs. For example, in Bug-

306 in PlaidML, the PlaidML-setup could only recognize the

CPU and fail to find the GPU. Exception handling is another

important subtype of semantic bug. For example, in Bug-

193 in TC, warnings about preconditions not being checked

should be suppressed because non-initialized reductions are

unnecessary when developing autotuning. In Bug-2855 in

Glow, “RemoveNetwork” failed silently instead of returning

error information about the failure. Finally, some system-

specific semantic bugs occurred in DL compilers. For example,

in Bug-1713 in TVM, the weight shape in the operator conv2

was incorrectly processed. As a result, the wrong weight’s

shape was obtained. In Bug-2013 in Glow, the graph optimizer

failed to optimize the non-inverses consecutive transposes.

As for compatibility bugs, there can be many reasons

for these bugs in DL compilers, including conflicts with

DL framework frontends, hardware backends, operating sys-

tems, and hardware devices. Taking the TVM compiler as

an example, it was stated in Bug-6287 that “TVMError:

relay.frontend.from keras() fails with models compiled in Ten-

sorFlow 2.3”. This bug showed a conflict with the Tensor-

Flow framework because TensorFlow 2.3 didn’t support the

attributes “node indices” and “tensor indices” in the “Node

class” anymore. Bug-2355 is a compatibility bug caused by a

Mobile GPU backend conflict. When TVM was deployed to

Mobile GPUs, incorrect “Vulkan results” would be obtained.

A windows compatibility bug happened in Bug-1007. It was

reported that “ModuleNotFoundError: No module named “fc-

ntl” when built TVM on the Windows operating system.”

C. Evolution of Proportions of Different Types of Bugs

Finding #3: The evolution trends of various bugs differ

greatly among different DL compilers.

Fig. 4 depicts the evolution of the proportions of actual

bugs and non-bugs in TVM, Glow, nGraph, PlaidML, and TC.

The results show that in TVM and nGraph, the proportions of

actual bugs tend to increase over time, while the percentages

of non-bugs tend to decrease. Contrary to TVM and nGraph,

in PlaidML and TC, the proportions of actual bugs tend to

decrease over time, while the ratios of non-bugs gradually

increase. In Glow, the proportions of actual bugs and non-

bugs have no obvious evolutionary trend.

In Fig. 5, we further present the evolution trend of the

proportions of different bug types over time. In TVM, the

proportions of different types of bugs have significant evolu-

tion trends. As time evolves, the proportions of environment,
memory and compatibility bugs show an upward trend while

document and semantic bugs show a downward trend. In Glow,

188

Fig. 5. Evolution of proportions of different bug types.

the ratios of environment and memory bugs tend to decrease.

In contrast, the proportion of semantic bugs tends to increase,

and there is no significant trend for compatibility and document
bugs. In nGraph, the ratio of memory bugs has increased

significantly over time, but the percentage of semantic bugs de-

creases. As for environment, compatibility, and document bugs,

trends are not obvious. The ratios of memory, compatibility
and document bugs decrease obviously in PlaidML, while the

semantic bugs’ proportion is significantly increased, and the

trend of environment bugs is not obvious. In TC, no significant

trend is observed for all types of bugs. Above conclusions

have been tested through the Mann-Kendall [35] trend test

(alpha = 0.05) and the results are shown in Table III.

D. Implications

Since non-bugs account for more than half of all bug

reports, we first propose suggestions from two aspects to

help developers deal with non-bugs. On the one hand, a

question tracker could be provided for users to submit their

questions and find relevant answers. For example, in TVM, it is

encouraged to post general questions on https://discuss.tvm.ai,

where more people are expected to join the discussion of

the questions. In addition, stack overflow6 could be another

important place for asking questions and finding detailed

answers. On the other hand, a tool can be integrated to

identify duplicate bug reports. For example, in [36], a just-

in-time duplicate detection method was proposed to prevent

duplicate bug reports from being submitted by means of the

continuous query. By recommending relevant bug reports to

reporters, it helps users find solutions effectively and reduces

the developers’ workloads at the same time.

As for actual bugs, more effort should be made on semantic
and compatibility bugs because these two types of bugs are the

6https://stackoverflow.com/

most numerous in DL compilers. To address semantic bugs,

automatic bug detection tools could be used. For example,

MUVI (Multi-variable inconsistency) [37], a method devel-

oped to automatically detect semantic bugs by identifying the

multi-variable access correlations from programs. In addition,

since the number of compatibility bugs is the second most

in DL compilers, specific methods for detecting compatibility
bugs in DL compilers should be developed. For example,

researchers have done quite a few work to study the detection

methods of compatibility bugs in Android Apps [38], [39].

IV. IMPACTS OF DIFFERENT TYPES OF BUGS

In this section, the results of RQ2 are presented. We analyze

the impacts of bugs to understand the consequences caused by

bugs in DL compilers.

A. Distribution of Impacts Caused by Bugs in Different DL
Compilers

Finding #4:More than one-third of bugs in DL compilers

result in crashes or exceptions.

According to the results in Fig. 6, the major impact of

bugs in DL compilers is crash/exception. In TVM, 47.8% of

bugs result in crashes/exceptions, which is the highest among

the five DL compilers. It is 46.3% in PlaidML, 45.0% in

Glow, 36.1% in TC, and 35.3% in nGraph. Crashes/exceptions

usually occur when the DL compilers stop and exit unex-

pectedly. For example, in TVM, an error was printed when

using cache read in order in the Bug-802. Similarly, in Bug-

1043 in TVM, an error occurred when using cache read in

the situation of reusing the same buffer in multiple stages.

Except for crash/exception, build/compilation error and wrong

output are two other important impacts. 29.4% of bugs in

nGraph cause build/compilation errors, which is the highest

among the five DL compilers. In TC, 19.4% of bugs can

189

TABLE III
RESULTS OF MANN-KENDALL TREND DETECTION FOR FIG. 4 AND FIG. 5
(“↗” MEANS UPWARD TREND, “↘” MEANS DOWNWARD TREND, AND

“−→” MEANS NO SIGNIFICANT TREND)

Compiler Bug type p value Trend

TVM

Bug <0.001 ↗
Bon-bug <0.001 ↘

Environment 0.001 ↘
Memory 0.02 ↘

Compatibility <0.001 ↘
Document <0.001 ↗
Semantic <0.001 ↗

Glow

Bug 0.95 −→
Non-bug 0.88 −→

Environment <0.001 ↘
Memory <0.001 ↘

Compatibility 0.94 −→
Document 0.11 −→
Semantic <0.001 ↗

nGraph

Bug < 0.001 ↗
Non-bug < 0.001 ↘

Environment 0.49 −→
Memory 0.03 ↗

Compatibility 0.85 −→
Document 0.53 −→
Semantic <0.001 ↘

PlaidML

Bug < 0.001 ↘
Non-bug < 0.001 ↗

Environment 0.12 −→
Memory <0.001 ↘

Compatibility <0.001 ↘
Document <0.001 ↘
Semantic <0.001 ↗

TC

Bug <0.001 ↘
Non-bug 0.02 ↗

Environment 0.93 −→
Compatibility 0.35 −→

Document 0.70 −→
Semantic 0.32 −→

generate and present wrong results to users. It is higher than

that of Glow (i.e., 15.8%), TVM (i.e., 11.4%), nGraph (i.e.,

7.4%), and PlaidML (i.e., 5.6%). Taking Bug-47 in PlaidML

as an example, the computation results obtained after using

PlaidML were different from those obtained directly from the

TensorFlow framework (i.e., a wrong output was given).

In order to analyze which kind of bug is more likely

to cause severe consequences, we have investigated the im-

pact distribution among different bug types (see Fig. 7).

According to the results, the major impact of the envi-
ronment bug is crash/exception. 47.22% (17 out of 36) of

environment bugs would cause crashes/exceptions, followed

by build/compilation errors (i.e., 19.44%), wrong outputs

(i.e., 11.11%), warning style errors (i.e., 5.56%), and op-

eration failures (i.e., 2.78%). Memory bugs only result in

crashes/exceptions and warning style errors. The proportions

of both are 50%. Crash/exception and build/compilation error

are the two major impacts caused by compatibility bugs. The

Fig. 6. The distribution of impacts in DL compilers.

proportions are 40% (30 out of 75) and 35.06% (28 out of

75), respectively. In addition, 8% and 6.67% of compatibility
bugs lead to operation failures and wrong outputs, respectively.

As for document bugs, 72% (36 out of 50) of them result

in warning style errors. Almost half of the semantic bugs,

i.e., 49.07% (238 out of 485), lead to crashes/exceptions.

The proportions of wrong outputs, build/compilation errors,

warning style errors and operation failures caused by semantic
bugs are 14.23%, 14.02%, 5.57%, and 4.54%, respectively.

For further analysis, we have calculated the lift correla-

tion [40] between bug types and impacts. lift is a statistical

metric used to indicate the correlation between two types of

bugs. If the lift value between two types equals 1, it means

that there is no correlation between them. If the lift value

between two types is larger than 1, it means that the two types

are positively correlated. Conversely, if the lift value between

two types is less than 1, there is a negative correlation between

the two types. Results of the lift correlation between bug

types and impacts are presented in Table IV. Numbers greater

than 1 (i.e., with positive correlation) are highlighted in bold

font.

B. Correlation Between Bug Types and Impacts

Finding #5: Environment and compatibility bugs are

prone to result in build/compilation errors; memory and

document bugs are prone to lead to warning style errors;

semantic bugs are more likely to cause crashes or excep-

tions.

Table IV summarizes the values of lift correlation be-

tween bug types and impacts. The results show that envi-
ronment and compatibility bugs are most prone to result in

build/compilation errors. The lift value between environment
bug and build/compilation error is 1.29. Between compatibility
bug and build/compilation error, it is 2.32. Memory bugs

are most likely to cause warning style errors, and the lift
correlation between memory bugs and warning style errors is

3.55. The reason is that many memory bugs are memory leaks

that related to memory resource release failure. The running

of the program may not be disturbed immediately, but the

190

TABLE IV
THE lift CORRELATIONS BETWEEN BUG TYPES AND IMPACTS

Type Environment Memory Compatibility Document Semantic
Crash/exception 1.04 0.97 0.83 0.56 1.09

Build/compilation error 1.29 0.41 2.32 0 0.93

Operation failure 0.54 1.22 1.52 1.45 0.88

Wrong output 0.89 1.22 1.52 1.45 0.88

Warning style error 0.53 3.55 0.61 4.52 0.53

Fig. 7. The impacts of different bug types.

code still needs improvement. For example, in Bug-2646 in

nGraph, when the “remove compiled function” was called on

the CPU backend, “cleanup runtime context()” was not called

to clean up the runtime context and led to a memory leak.

In addition to memory bugs, document bugs are also more

likely to cause warning style errors. The correlation between

document bugs and warning style errors is 4.52, indicating that

a strong correlation exists between warning style errors and

document bugs. For example, in Bug-29 and Bug-176 in TC,

the typos in examples make it hard for users to understand.

Finally, semantic bugs are prone to cause crashes/exceptions.

The lift value between semantic bug and crash/exception

impact is 1.09. Therefore, we consider these two types to be

weakly correlated.

C. Implications

A large number of bugs in DL compilers lead to serious

consequences, such as crashes or exceptions, accounting for

35.3-47.8% of all the actual bugs. In order to improve the

quality of the DL compilers, a lot of effort should be put

into handling the crash or exception errors. For example,

crash reporting tools similar to Mozilla Socorro [41] could

be embedded in DL compilers to collect information relevant

to crashes. Using these tools, crash reports will be generated

when programs stop running normally in the user environment.

The information available in crash reports could be used to

locate and rank buggy files. For example, Wang et al. [41]

proposed an algorithm based on crash correlation groups,

which locates and ranks buggy files by analyzing stack traces

in correlated crash types. In addition, the information in crash

reports could be used to predict top crashes in a specific

version of the DL compiler. For example, in [42], the authors

employed features extracted from crash reports and source

code to train a machine learning model to effectively predict

the top crashes before a new version release.

In addition to crash/exception, build/compilation error is

another important impact of bugs in the DL compilers. De-

velopers spend a substantial amount of time repairing code

that does not compile. For example, according to our analysis,

it takes an average of 34.3 days to fix a build/compilation

error in TVM. In order to reduce the burden on developers,

we recommend using automatic build/compilation error repair

methods. For example, DeepDelta [43] was proposed to repair

the build-time compilation errors automatically. It learns the

fix patterns of errors through learning the changes between

failed and resolved snapshots of code.

V. FIXING TIME OF BUGS

To answer RQ3, we analyze the time required to close bug

reports in this section.

A. Fixing Time of Actual Bugs, Non-bugs, and Invalid Reports

Finding #6: It takes the most time to close bug reports in

nGraph and the least time to close bug reports in TVM.

In this section, we have calculated the average fixing time

of actual bugs, non-bugs, and invalid reports in TVM, Glow,

nGraph, PlaidML, and TC. According to the results in Fig. 8,

it is obvious that closing reports in nGraph takes more time

than closing reports in the other four compilers. In nGraph,

it takes the most time (i.e., 433.1 days on average) to close

invalid reports. The average time spends on closing non-bugs

is 213.7 days. However, the time required to fix actual bugs is

the least, which is 164.8 days on average. Similar to nGraph,

invalid reports also take the most time (i.e., 118.2 days on

average) to be closed in PlaidML, while the time required to

close actual bugs and non-bugs is 51.2 days and 49.9 days,

respectively. Bug reports in TVM are closed fastest among

all the five DL compilers we analyzed. In TVM, it takes an

average of 20.6 days to fix an actual bug, 36.0 days to close

a non-bug and 11.8 days to close an invalid report. From the

above analysis, we can also conclude that in addition to fixing

actual bugs, amounts of time are spent on dealing with non-

bugs and invalid reports. Taking nGraph as an example, the

time it takes to close invalid reports is 2.6 times the time

it takes to fix actual bugs. A similar situation happens in

191

Fig. 8. Average closing time of actual bugs, non-bugs and invalid reports.

PlaidML. The time it takes to close invalid reports is 2.3 times

the time it takes to fix actual bugs.

B. Fixing Time of Environment, Compatibility, Memory, Doc-
ument, and Semantic Bugs

Finding #7: It takes the least time to resolve document
bugs.

In this section, we study the difference between the fixing

time of different types of bugs. From Fig. 9, we can observe

that document bugs often consume much less time to be fixed

than the other four types of bugs. In PlaidML, the fixing time

of document bugs is the longest among the five DL compilers,

which is 63.0 days on average, followed by TC (17.6 days

on average), TVM (7.4 days on average), Glow (6.8 days on

average), and nGraph (2.3 days on average). The time it takes

to fix environment, memory, compatibility, and semantic bugs

is quite different for different DL compilers. In TVM, it takes

the most time to fix environment bugs (on average of 37.8

days), which is more than 5 times the fixing time of document
bugs and more than 2 times the fixing time of memory bugs.

In Glow and PlaidML, the fixing time of memory bugs is

the longest, which is 103.6 days and 269.2 days, respectively.

In nGraph, it takes 205.9 days on average to fix semantic
bugs. However, it only takes an average of 0.2 days to resolve

memory bugs and an average of 2.3 days to solve document
bugs. As for TC, compatibility bugs spend the most time to

fix (i.e., 209.5 days on average), followed by document bugs

(17.6 days) and environment bugs (11.2 days).

C. Implication

Due to the longest fixing time of bugs in nGraph, we have

conducted a more in-depth study on bug reports in nGraph.

After the manual analysis, we find that 21.9% of bug reports

in nGraph take more than a year to close. The main reason

for the extremely long fixing time is the failure to respond

to and close bug reports in a timely manner. For example, in

Bug-552 in nGraph, the last comment was submitted on Feb.

28, 2018, but it was not closed until Oct. 7, 2020, which took

951.7 days. The same thing happens in Bug-765, Bug-957,

and Bug-1077. In Bug-2917, it took developers 46.8 days to

Fig. 9. Average fixing time of different types of bugs.

first respond and assign the report, and then it took another

465.8 days to close the bug report. We suggest deploying a

bot in nGraph to help with the maintenance of issues in the

Github repository. For example, Tensorflow-Butler is used in

TensorFlow’s Github repository to assign bug reports to the

corresponding developers and update the state of bug reports

to improve the efficiency of processing reports.

Besides the suggestions for developers, we recommend

that users should submit high-quality bug reports to help

developers reproduce bugs as soon as possible. It is difficult

to reproduce a bug only with the error message. Detailed

environment information is required, such as the hardware, the

operating system, and the specific version of the DL compiler.

In addition to the environment information, a self-contained

example would be helpful and necessary to accelerate the

fixing process.

VI. THREATS TO VALIDITY

Similar to other empirical research, our study naturally has

potential validity issues. We identify potential threats to the

effectiveness of our study from the following three aspects:

Threats to Construct Validity. In this study, we concen-

trate on closed bug reports because bug reports that have not

been closed are still under discussion and contain incomplete

information. If future closed bug reports are considered, the

distribution of bug types could be influenced.

Threats to Internal Validity. In the process of manual

classification, We tried our best to avoid classification errors.

We carefully checked the information contained in bug reports,

including bug descriptions, comments, related pull requests,

and commits. Two authors separately took the classification of

all bug reports to reduce the threat. During the process, cross-

checks were performed, and conflict cases were eliminated

through discussion to reach a consensus.

Threats to External Validity. The bug reports studied in

this paper are collected from TVM, Glow, nGraph, PlaidML,

and TC. Although they are widely-used DL compilers, some

findings and implications may not be generalized to other DL

compilers. To reduce this threat, we try not to extend the

conclusions to other DL compilers, nor do we intend to provide

any general implication to all DL compilers. Even though, we

192

believe that this paper still provides many interesting findings

and suggestions for DL compiler developers and users, the five

studied DL compilers are also among the most popular ones.

VII. RELATED WORK

Bugs in Traditional Compilers and DL Frameworks.
Compilers are foundational and widely-used software [28],

[44], the bugs in which can have a significant impact since

they can almost affect all software build on them. Especially

for safety- and security-critical applications, the consequences

can be disastrous [45]. Therefore, it is essential to detect bugs

in compilers. However, compiler bugs are difficult to recognize

because they usually manifest indirectly as application failures.

It is hard for developers to determine whether a software

failure is caused by the program they are developing or the

compilers they are using [46]–[48].

An in-depth understanding of bugs in compilers can help

detect and fix them. In [45], the authors conducted the first

empirical study on the characteristics of the bugs in two

traditional compilers, GCC and LLVM. They studied the

location of bugs, properties of bug-revealing test cases and

the bug fixes, duration of bugs, and priorities of bugs. To

improve the quality of traditional compilers, some methods

have been proposed [49]–[52]. In [53], the authors conducted

an empirical study on the testing methods of traditional com-

pilers from four aspects, including approaches of constructing

test programs [54], methods to address the test-oracle prob-

lems [54], [55], methods for optimizing the test process [56],

and methods developed for post-processing test results [57].

Different from the above research, we focus on studying the

characteristics of bugs in DL compilers instead of traditional

compilers in this paper.

In addition, some recent progress has been made to analyze

bug characteristics in DL frameworks [58]–[61]. Islam et

al. [58] studied bugs in Caffe, Keras, TensorFlow, Theano,

and Torch from the perspectives of bug type, root cause, and

effects of bugs. Zhang et al. [59] performed an empirical study

on deep learning applications programmed on the TensorFlow

framework. They collected 175 bugs from stack overflow and

Github to analyze the symptoms and root causes of bugs.

Different from DL frameworks, DL compilers aim to provide a

general-purpose optimization and compilation of a DL model

for diverse target devices to accelerate DL model deployment

at the industrial production level. Our study also confirms that

the common bug characteristics of DL compilers distribute

quite differently from DL frameworks, calling for attention

for DL compiler developers and researchers to provide quality

assurance techniques.

Deep Learning Compilers. With the growing demand to

deploy various DL models on diverse DL hardware, multi-

ple DL compilers have been proposed from both industry

and academia, such as TVM [22], XLA [23], Glow [24],

nGraph [25], PlaidML [26] and Tensor Comprehensions

(TC) [27]. Among them, XLA [23] is developed by the

Google team and is a compiler for TensorFlow. XLA uses

JIT compilation techniques to analyze the TensorFlow graph

created by the user at runtime. TVM [22] is an end-to-end

optimizing compiler stack proposed by Apache. It provides a

machine learning-based optimization system that can search

for optimized tensor operators automatically. Glow [24] and

TC [27] are two DL compiler released by Facebook. The main

technique of Glow is graph-lowering, which could be used to

generating efficient code. TC provides a high-level language

for neural network developers to express their networks.

PlaidML [26] and nGraph [25] are two DL compilers designed

by Intel. nGraph consumes the compute graph obtained from

the DL framework to construct the nGraph intermediate repre-

sentation (IR) and then lowers that to different backends, such

as cuDNN and MKL-DNN. PlaidML, as a compiler for DL,

is also available as a component of the Intel nGraph compiler

stack, which is useful mainly for supporting a new kernel.

Although the functional components (such as frontend and

backend) in DL compilers are similar to traditional compilers,

these two types of compilers have different characteristics.

Focusing on the design architecture of DL compilers, authors

in [29] performed a survey of TVM, nGraph, TC, Glow, and

XLA. The authors dissected the commonly adopted design

architecture of the existing DL compilers and analyzed the

critical design components. In addition, they performed a

quantitative performance comparison among DL compilers.

However, to the best of our knowledge, the research on the

bug analysis of DL compilers is still at a very early stage. This

paper makes an early attempt and conducts a comprehensive

empirical study on bugs in five DL compilers, including TVM,

Glow, nGraph, PlaidML, and TC.

VIII. CONCLUSIONS

This paper performs a large-scale study on actual bugs in

five widely-used deep learning compilers, including TVM,

Glow, nGraph, PlaidML, and TC. We manually analyzed

2,717 bug reports collected from their corresponding Github

repositories, which are actual bug information submitted by

users and developers. Our analysis is conducted from three

perspectives, including � the frequency distribution of dif-

ferent types of bugs and the proportion evolution of bugs

with the increase of time, � severe consequences caused

by bugs and the correlation between bug types and impacts,

and � the time required to close bug reports. Our study

found that the main root causes of bugs in DL compilers

are semantic and compatibility bugs. Over one-third of bugs

in DL compilers would result in crashes/exceptions. It takes

the longest time to fix bugs in the nGraph compiler among

all the five compilers studied in this paper. Finally, practical

implications were provided for both developers and users to

develop and use DL compilers with higher quality.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-

ence Foundation of China under Grant 61772055 and Grant

61872169.

193

REFERENCES

[1] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep
learning applications to autonomous vehicle control,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 2, pp. 712–733, 2021.

[2] M. Mohammadi, A. Al Fuqaha, M. Guizani, and J. S. Oh, “Semisu-
pervised deep reinforcement learning in support of iot and smart city
services,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 624–635,
2017.

[3] A. Puente Castro, E. Fernandez Blanco, A. Pazos, and C. R. Munteanu,
“Automatic assessment of alzheimer’s disease diagnosis based on deep
learning techniques,” Computers in Biology and Medicine, vol. 120, p.
103764, 2020.

[4] H. Panwar, P. Gupta, M. K. Siddiqui, R. Morales Menendez, and
V. Singh, “Application of deep learning for fast detection of covid-19 in
x-rays using ncovnet,” Chaos, Solitons & Fractals, vol. 138, p. 109944,
2020.

[5] F. Murat, O. Yildirim, M. Talo, U. B. Baloglu, Y. Demir, and U. R.
Acharya, “Application of deep learning techniques for heartbeats detec-
tion using ecg signals-analysis and review,” Computers in biology and
medicine, p. 103726, 2020.

[6] Q. Guo, S. Jin, M. Li, Q. Yang, K. Xu, Y. Ju, J. Zhang, J. Xuan,
J. Liu, Y. Su et al., “Application of deep learning in ecological resource
research: Theories, methods, and challenges,” Science China Earth
Sciences, pp. 1–18, 2020.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 6000–6010.

[10] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2021.

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[13] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[14] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2016, pp. 2135–2135.

[15] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A
comprehensive study on challenges in deploying deep learning based
software,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 750–762. [Online].
Available: https://doi.org/10.1145/3368089.3409759

[16] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2019, pp. 810–822.

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[18] H. Liao, J. Tu, J. Xia, and X. Zhou, “Davinci: A scalable architecture
for neural network computing,” in 2019 IEEE Hot Chips 31 Symposium
(HCS). IEEE Computer Society, 2019, pp. 1–44.

[19] A. Kingsley-Hughes, “Inside apple’s new a11 bionic processor,” ZDNet,
September, 2017.

[20] B. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski, and S. Avan-
cha, “Intel nervana neural network processor-t (nnp-t) fused floating
point many-term dot product,” in 2020 IEEE 27th Symposium on
Computer Arithmetic (ARITH). IEEE, 2020, pp. 133–136.

[21] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu,
L. Xu, and L. V. Gool, “AI benchmark: All about deep learning on
smartphones in 2019,” CoRR, vol. abs/1910.06663, 2019.

[22] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: end-to-end op-
timization stack for deep learning,” arXiv preprint arXiv:1802.04799,
vol. 11, p. 20, 2018.

[23] C. Leary and T. Wang, “Xla: Tensorflow, compiled,” TensorFlow Dev
Summit, 2017.

[24] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein et al., “Glow: Graph
lowering compiler techniques for neural networks,” arXiv preprint
arXiv:1805.00907, 2018.

[25] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,
A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi et al.,
“Intel ngraph: An intermediate representation, compiler, and executor
for deep learning,” arXiv preprint arXiv:1801.08058, 2018.

[26] Intel, “Plaidml,” 2018. [Online]. Available: https://www.intel.ai/
reintroducing-plaidml

[27] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions,” arXiv preprint arXiv:1802.04730, 2018.

[28] C. Lattner, “Llvm and clang: Next generation compiler technology,” in
The BSD conference, vol. 5, 2008.

[29] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehensive
survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 3, pp. 708–727, 2020.

[30] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li, “An empirical study
on real bugs for machine learning programs,” in 2017 24th Asia-Pacific
Software Engineering Conference. IEEE, 2017, pp. 348–357.

[31] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: a large-scale empirical study,” in 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories. IEEE, 2017, pp.
413–424.

[32] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical software engineering, vol. 19,
no. 6, pp. 1665–1705, 2014.

[33] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei, “A
comprehensive study on real world concurrency bugs in node.js,” ASE
2017 - Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, pp. 520–531, 2017.

[34] R. Y. Chang, A. Podgurski, and J. Yang, “Discovering neglected condi-
tions in software by mining dependence graphs,” IEEE Transactions on
Software Engineering, vol. 34, no. 5, pp. 579–596, 2008.

[35] H. B. Mann, “Nonparametric tests against trend,” Econometrica: Journal
of the econometric society, pp. 245–259, 1945.

[36] A. Di Sorbo, J. Spillner, G. Canfora, and S. Panichella, “Won’t we fix
this issue? qualitative characterization and automated identification of
wontfix issues on github,” arXiv preprint arXiv:1904.02414, 2019.

[37] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou,
“Muvi: Automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs,” in Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles,
2007, pp. 103–116.

[38] H. Huang, L. Wei, Y. Liu, and S.-C. Cheung, “Understanding and
detecting callback compatibility issues for android applications,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 532–542.

[39] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in android apps,” in
2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2018, pp. 167–177.

[40] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

194

[41] S. Wang, F. Khomh, and Y. Zou, “Improving bug management using
correlations in crash reports,” Empirical Software Engineering, vol. 21,
no. 2, pp. 337–367, 2016.

[42] D. Kim, X. Wang, S. Kim, A. Zeller, S. C. Cheung, and S. Park,
“Which crashes should i fix first?: Predicting top crashes at an early
stage to prioritize debugging efforts,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 430–447, 2011.

[43] A. Mesbah, A. Rice, E. Johnston, N. Glorioso, and E. Aftandilian,
“Deepdelta: learning to repair compilation errors,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 925–936.

[44] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[45] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in gcc and llvm,” in Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, 2016, pp. 294–305.

[46] Y. Tang, Z. Ren, W. Kong, and H. Jiang, “Compiler testing: a systematic
literature analysis,” Frontiers of Computer Science, vol. 14, no. 1, pp.
1–20, 2020.

[47] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 65–76,
2015.

[48] A. Groce, C. Zhang, M. A. Alipour, E. Eide, Y. Chen, and J. Regehr,
“Help, help, i’m being suppressed! the significance of suppressors
in software testing,” in 2013 IEEE 24th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2013, pp. 390–399.

[49] H. Jiang, Z. Zhou, Z. Ren, J. Zhang, and X. Li, “Ctos: Compiler testing
for optimization sequences of llvm,” IEEE Transactions on Software
Engineering, 2021.

[50] B. Jiang, X. Wang, W. Chan, T. Tse, N. Li, Y. Yin, and Z. Zhang,
“Cudasmith: A fuzzer for cuda compilers,” in 2020 IEEE 44th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE,
2020, pp. 861–871.

[51] R. Schumi and J. Sun, “Spectest: Specification-based compiler testing,”
Fundamental Approaches to Software Engineering, vol. 12649, p. 269,
2021.

[52] J. Chen, H. Ma, and L. Zhang, “Enhanced compiler bug isolation via

memoized search,” in 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2020, pp. 78–89.

[53] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Computing Surveys (CSUR),
vol. 53, no. 1, pp. 1–36, 2020.

[54] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated
testing of graphics shader compilers,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, pp. 1–29, 2017.

[55] K. Nakamura and N. Ishiura, “Random testing of c compilers based on
test program generation by equivalence transformation,” in 2016 IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE,
2016, pp. 676–679.

[56] A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause
reduction: delta debugging, even without bugs,” Software Testing, Veri-
fication and Reliability, vol. 26, no. 1, pp. 40–68, 2016.

[57] J. Holmes and A. Groce, “Causal distance-metric-based assistance for
debugging after compiler fuzzing,” in 2018 IEEE 29th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2018,
pp. 166–177.

[58] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2019. New York, NY, USA: Association for Computing Machinery,
2019, p. 510–520.

[59] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2018. New York, NY, USA: Association for Computing
Machinery, 2018, p. 129–140.

[60] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of real faults in deep learning systems,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), 2020, pp. 1110–1121.

[61] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning
library testing via effective model generation,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 788–799.

195

