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Abstract—The reproduction of software failure plays an important role during the development and maintenance of software, 

especially makes a great contribution to the software debugging. Since the requirement of the highly real time performance and complex 

control algorithm, repetition of debugging is needed by the development and maintenance of flight control software. Consequently, the 

reproduction of failure is crucial to flight control software. Although many researches focus on the methodology of the reproduction of 

general software in recent years, it should be noted that these methods may be incompatible to flight control software whose characteristic 

is special comparing with general software. Therefore, it is necessary to explore the conformable method for the reproduction of the 

failure of flight control software. According to the characteristics of flight control software, a testing case chain was abstracted from the 

testing process of flight control software, and then the state transition model of flight control software was constructed. Base on the status 

transition model, a testing case chain based method for the reproduction of flight control software was proposed. Furthermore, with the 

restriction of the minimum cost, a method for finding the shortest path in the testing process of the failure reproduction was analyzed and 

conducted. Finally, an experiment was implemented to an open-source project (Ardupilot) using the proposed method. The result shows 

that, the proposed method can not only yield the shortest path from the process of the reproduction of failure, but also narrow the scope 

of the defect localization to some extent. Our work presents a way to improve the debugging efficiency and may shed light on the failure 

reproduction of the flight control software. 
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0 0 1 2 4 5 7 605.0 
1 0 1 2 3 4 7 345.0 
2 0 1 8 3 4 5 7 595.0 
3 0 1 8 4 5 6 7 585.0 
4 0 1 8 5 6 7 405.0 
5 0 1 8 3 4 7 295.0 
6 0 1 2 4 5 6 7 635.0 
7 0 1 7 65.0 
8 0 1 2 3 5 6 7 495.0 
9 0 1 2 5 6 7 455.0 
10 0 1 2 3 4 5 7 645.0 
11 0 1 8 5 7 375.0 
12 0 1 8 4 5 7 555.0 
13 0 1 2 4 7 305.0 
14 0 1 2 3 4 5 6 7 675.0 
15 0 1 8 3 5 6 7 445.0 
16 0 1 2 3 7 165.0 
17 0 1 2 3 5 7 465.0 
18 0 1 8 3 4 5 6 7 625.0 
19 0 1 2 7 125.0 
20 0 1 8 3 7 115.0 
21 0 1 2 5 7 425.0 
22 0 1 8 3 5 7 415.0 
23 0 1 8 4 7 255.0 
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