
A Testing Case Chain Based Method for the Failure
Reproduction of Flight Control Software

Xiaoting Du, Nan Wang

School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
(xiaoting_2015@buaa.edu.cn)

Abstract—The reproduction of software failure plays an important role during the development and maintenance of software,

especially makes a great contribution to the software debugging. Since the requirement of the highly real time performance and complex

control algorithm, repetition of debugging is needed by the development and maintenance of flight control software. Consequently, the

reproduction of failure is crucial to flight control software. Although many researches focus on the methodology of the reproduction of

general software in recent years, it should be noted that these methods may be incompatible to flight control software whose characteristic

is special comparing with general software. Therefore, it is necessary to explore the conformable method for the reproduction of the

failure of flight control software. According to the characteristics of flight control software, a testing case chain was abstracted from the

testing process of flight control software, and then the state transition model of flight control software was constructed. Base on the status

transition model, a testing case chain based method for the reproduction of flight control software was proposed. Furthermore, with the

restriction of the minimum cost, a method for finding the shortest path in the testing process of the failure reproduction was analyzed and

conducted. Finally, an experiment was implemented to an open-source project (Ardupilot) using the proposed method. The result shows

that, the proposed method can not only yield the shortest path from the process of the reproduction of failure, but also narrow the scope

of the defect localization to some extent. Our work presents a way to improve the debugging efficiency and may shed light on the failure

reproduction of the flight control software.

Keywords—flight control software, testing case chain, state transition model, failure reproduction

*

 100191

Ardupilot

* , E-mail: xiaoting_2015@buaa.edu.cn

1

 2881
978-1-4673-8318-9/16/$31.00©2016 IEEE

Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference August 12-14, 2016 Nanjing, China

Ardupilot

(1)
(2)

(3)

2 3
4

5
6

2

Wei Jin[1] BugRedux

13.46%

Cristian Zamfir George Candea[2]

“ ” “ ”

Fitsum Meshesha Kifetew[3][4]

79% Ning Chen Sung Kim[5]
STAR

42.3% Tobias
Roehm[6][7][8]

Shay Artzi Sunghun Kim[9]

[10] dump

Martin Burger

Andreas Zeller[11] JINSI delta
debugging slicing

0.22%

 2882

3

1

S E

S E

1

4

4.1

�
� �

�

�
����� ��

� � �
�

�

	
� ���� � ��
	
�
 	
�
 �
 	

4.2

1

2

3

�

 2883

���� � �� �
� � � � 1

	
�
�������� ��� ��� ������� ��� ��� � � ������� �
� ���
� � � 	
� � �

	
�
 	
�
 �
 	

�������� ��� ��� � � ��� ��

��� ��� �� ��
4

5

A B C D A B D

A B C D
A B D

4.3

2 5

2

(1)

3

S
E

1 1.5 A
B A

A�B

S E

3

(2)

2
4

1 5
2

(3)

4 5
c j f

i b
6

(4)

A B
A B 7

6

S E S E

(a) (b)

S E S E

(c) (d)
4 1

 2884

S E S E

S E

(e) (f)

(g)

S E

S E

S E

(i)

(h)

(j)

5 2

S E S E

S E

(a) (b)

(e)

S E

S E

S E

(d)

(c)

(f)
6

S E S E

S E

(b) (a)

(c)

S ES E S E

(e)(f) (d)

7

4.4

(1)

� � �
�� �!� " #

 �$� e e
 % �$� �$�

�� � � &'(

)*+,
-&./0�0 �$�1� �� % �$��1
 ��$�2

min
7

e e
F(e)=1+1+1.5+1=4.5

a) e

e
e 7

e
e

 �$� 8
�� �$��

S E S E

(b) (a)

S E

(e)

8 e

b) e

e
e

e e

 2885

 % �$� 9
�� % �$��

S E

(c)

S E S E

(f) (d)

9 e

e
&./3��� �$�� �� %3 �$���
 456

� e
�� �

(2)
�� � &'(
&'(3� �

&'(3� � &'(3� �$��
&'(3� % �$��

�� �

5

Ardupilot

5.1

Ardupilot
/

APM
mavlink

20 Nuttx

Python
5.2

100m 100m GPS PID
PID mavlink

mavlink
10

0 1 2 3

4

567

5s
100m

60s
100m

40s

mavlink
60s

PID
30s

PID
300s

GPS
180s

10

10 mavlink

mavlink

PID

GPS mavlink

10m 10m
11

0 1 2 3

4

567

5s
100m

60s
100m

40s

PID
30s

8 9

10m 10s

10m 5s

GPS
180s

11

 2886

100m
GPS 11

2 4 PID
PID

11 6

1 i j i j
i

j
1

 0 1 2 3 4 5 6 7 8 9

0 0 5

1 0 60 60 10

2 0 40 180 300 60 5

3 0 180 300 60

4 0 300 60

5 0 30 60

6 0 60

7 0
8 40 180 300 60 0 5

9 180 300 60 0

12

-1

2

6
P

F

2

12

5.3

2

3075
3075

28715
1/10

6

Ardupilot

 2887

2

0 0 1 2 4 5 7 605.0
1 0 1 2 3 4 7 345.0
2 0 1 8 3 4 5 7 595.0
3 0 1 8 4 5 6 7 585.0
4 0 1 8 5 6 7 405.0
5 0 1 8 3 4 7 295.0
6 0 1 2 4 5 6 7 635.0
7 0 1 7 65.0
8 0 1 2 3 5 6 7 495.0
9 0 1 2 5 6 7 455.0
10 0 1 2 3 4 5 7 645.0
11 0 1 8 5 7 375.0
12 0 1 8 4 5 7 555.0
13 0 1 2 4 7 305.0
14 0 1 2 3 4 5 6 7 675.0
15 0 1 8 3 5 6 7 445.0
16 0 1 2 3 7 165.0
17 0 1 2 3 5 7 465.0
18 0 1 8 3 4 5 6 7 625.0
19 0 1 2 7 125.0
20 0 1 8 3 7 115.0
21 0 1 2 5 7 425.0
22 0 1 8 3 5 7 415.0
23 0 1 8 4 7 255.0

[1] Jin, W., & Orso, A. BugRedux: reproducing field failures for in-

house debugging. In Proceedings of the 34th International

Conference on Software Engineering (pp. 474-484). IEEE Press,

2012.

[2] Zamfir, C., & Candea, G. Execution synthesis: a technique for

automated software debugging. In Proceedings of the 5th

European conference on Computer systems (pp. 321-334). ACM,

2010.

[3] Kifetew, F. M., Jin, W., Tiella, R., Orso, A., & Tonella, P.

Reproducing field failures for programs with complex grammar-

based input. In Software Testing, Verification and Validation

(ICST), 2014 IEEE Seventh International Conference on (pp.

163-172). IEEE, 2014.

[4] Kifetew, F. M. A search-based framework for failure

reproduction. In Search Based Software Engineering (pp. 279-

284). Springer Berlin Heidelberg, 2012.

[5] Chen, N., & Kim, S. STAR: stack trace based automatic crash

reproduction via symbolic execution. Software Engineering,

IEEE Transactions on, 41(2), 198-220, 2015.

[6] Roehm, T., & Bruegge, B. Reproducing software failures by

exploiting the action history of undo features. In Companion

Proceedings of the 36th International Conference on Software

Engineering (pp. 496-499). ACM, 2014.

[7] Roehm, T., Gurbanova, N., Bruegge, B., Joubert, C., & Maalej,

W. Monitoring user interactions for supporting failure

reproduction. In Program Comprehension (ICPC), 2013 IEEE

21st International Conference on (pp. 73-82). IEEE, 2013.

[8] Roehm, T., Nosovic, S., & Bruegge, B. Automated extraction of

failure reproduction steps from user interaction traces. In

Software Analysis, Evolution and Reengineering (SANER), 2015

IEEE 22nd International Conference on (pp. 121-130). IEEE,

2015.

[9] Artzi, S., Kim, S., & Ernst, M. D. Recrash: Making software

failures reproducible by preserving object states. In ECOOP

2008–Object-Oriented Programming (pp. 542-565). Springer

Berlin Heidelberg, 2008.

[10] Weeratunge, D., Zhang, X., & Jagannathan, S. Analyzing

multicore dumps to facilitate concurrency bug reproduction.

ACM Sigplan Notices, 45(3), 155-166, 2010.

[11] Burger, M., & Zeller, A. Minimizing reproduction of software

failures. In Proceedings of the 2011 International Symposium on

Software Testing and Analysis (pp. 221-231). ACM, 2011.

 2888

